
Teek Documentation

Akuli

Jul 22, 2020

Contents

1 Tutorials and Guides 3

2 Reference 23

3 Understanding teek 71

Python Module Index 77

Index 79

i

ii

Teek Documentation

Teek is a pythonic way to write Tk GUIs in Python. See the README for an introduction to teek, and then click the
tutorial link below to get started.

Contents 1

https://github.com/Akuli/teek/#teek

Teek Documentation

2 Contents

CHAPTER 1

Tutorials and Guides

1.1 Teek Tutorial

If you have never written any teek code before, you came to the right place. You don’t need to have any tkinter
experience in order to learn teek, although learning teek will be easier if you have used tkinter in the past.

Note: If you have any trouble at all following this tutorial, let me know and I’ll try to make this tutorial better. You
can contact me for other things as well, but I’m especially interested in making this tutorial beginner-friendly.

1.1.1 Tkinter, _tkinter, Tcl, Tk and teek

You need to install tkinter in order to install teek. That’s correct, teek is an alternative to tkinter that needs tkinter. This
section explains why.

When we say tkinter, we really mean a combination of two things that cannot be installed separately:

• The _tkinter module that lets you run a Tcl interpreter within Python. Tcl is a programming language that
can be used without _tkinter.

• The pure-Python tkinter module uses _tkinter. When you do something like root = tkinter.
Tk(), tkinter starts a Tcl interpreter using _tkinter. Tkinter widgets are just classes written in pure
Python that run commands in the Tcl interpreter; to be more precise, they use a Tcl library called Tk.

Teek is an alternative to the pure-Python part; it uses a Tcl interpreter with _tkinter, just like tkinter, but it’s
much nicer to use in several ways as shown in the README.

tl;dr

Tcl is a programming language with a nice GUI library named Tk. Tkinter and Teek both use Tcl and Tk with
_tkinter.

3

https://github.com/Akuli/teek/issues/new
https://github.com/Akuli/teek/#teek

Teek Documentation

1.1.2 Installing Teek

Install Python 3.4 or newer and tkinter (yes, you need to have tkinter installed, there are more details about this above).
Then run this:

python3 -m pip install --user teek

Use py instead of python3 if you are on Windows.

1.1.3 Hello World!

import teek

window = teek.Window("Hello World")
label = teek.Label(window, "Hello World!")
label.pack()

window.on_delete_window.connect(teek.quit)
teek.run()

Run the program. It displays a tiny Hello World greeting.

Let’s go through the program line by line.

import teek

This imports teek. If you get an ImportError or a ModuleNotFoundError from this step, make sure that you
installed teek as explained above.

You can also import teek as tk and use tk.Label instead of teek.Label, but then people reading your
code will see tk.Label there and think that it’s probably a tkinter label, because it’s quite common to import
tkinter as tk. teek.Label is not much more work to type than tk.Label anyway (unlike tkinter.
Label), so I recommend just import teek.

Don’t do from teek import * because that confuses both tools that process code automatically, and peo-
ple who read your code. teek.Label(parent_widget, "hello") obviously creates a teek label, but
Label(parent_widget, "hello") creates a label. What is a label? If you have many star imports. . .

this code is BAD!! DONT DO THIS!! NO!!!
from teek import *
from os import *
from sys import *

. . . and you need to find out where Label comes from, you have many things that it might be coming from; if os
or sys had something called Label, it would replace teek’s Label. Everyone reading this code need to know that
neither os nor sys has anything named Label, which is bad. Also, if Python developers decide to add something
called Label to os or sys, your code will break.

window = teek.Window("Hello World")

This creates a Window widget with title "Hello World". A widget is an element of the GUI.

label = teek.Label(window, "Hello World!")

Many widgets need to go into another widget. Label is a widget that displays text, and this line of code puts it in our
window. The widget that the label goes in is called the parent or the master widget of the label. Similarly, the label
is said to be a child or slave of the window.

4 Chapter 1. Tutorials and Guides

https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError

Teek Documentation

label.pack()

If you create a label into the window, it isn’t displayed automatically. This line of code displays it.

Creating a child widget and displaying it in the parent are two separate things because this way you can choose how
the widget shows up. There’s more information about this below.

window.on_delete_window.connect(teek.quit)

This line tells teek to run teek.quit() when the window is closed. By default, nothing happens when the user tries
to close the window. You can connect it to any other function or method as well, which is useful for things like “Do
you want to save your changes” dialogs.

teek.run()

The code before this runs for just a fraction of a second, but this line of code stays running until we close the window.
That’s usually something between a few seconds and a few hours.

Note that instead of this. . .

label = teek.Label(window, "Hello World")
label.pack()

. . . we can also do this. . .

teek.Label(window, "Hello World").pack()

. . . because we create the variable once, and only use it once. However, this doesn’t work:

label = teek.Label(window, "Hello World").pack() # WRONG! common mistake

Look carefully: this does not set the label variable to a label; it sets that variable to what ever
the_actual_label_widget.pack() returns, which is not same as the label widget itself. If you need to
do more than one thing to a widget, set that widget to a variable and do all the things to that variable.

1.1.4 Options

Widget options can be used to change how widgets look and behave. For example, the text of a label is in an option
named text.

>>> window = teek.Window()
>>> label = teek.Label(window, "blah blah")
>>> label.config['text']
'blah blah'

The only way to check the value of an option is label.config['text'], but you can set values of options in
several ways:

• You can change the text after creating the label like label.config['text'] = "new text". The label
will display the new text automatically.

• When creating the label, you can pass options to it like teek.Label(window, text="blah blah").
Some common options can also be used without passing the option name explicitly with text=, e.g. teek.
Label(window, "blah blah"). This is widget-specific, and it’s documented in teek’s documentation;
for example, this label thing is documented in Label docs.

1.1. Teek Tutorial 5

Teek Documentation

Sometimes the name of a widget option happens to be a reserved keyword in Python. For example, in is not a valid
Python variable name because it’s used in things like 'hello' in 'hello world':

>>> in = 'lol'
Traceback (most recent call last):

...
SyntaxError: invalid syntax
>>> label.pack(in=window)
Traceback (most recent call last):

...
SyntaxError: invalid syntax

To avoid this problem, you can use in_ instead of in, and teek will handle it correctly:

>>> in_ = 'lol'
>>> in_
'lol'
>>> label.pack(in_=window)

Teek strips the last _ before it does anything with the option.

1.1.5 Tkinter Instructions

Tkinter is very popular, so if you want to know how to do something in tkinter, you can just google it. For example, if
you want to change the text of a label after creating it, google “tkinter change label text” and you’ll find a stackover-
flow answer that does some_label['text'] = 'new text' and some_label.config(text='new
text'). Neither of those works in teek, but both of them give errors with good messages that tell you what you
need to do instead.

Sometimes teek and tkinter differ a lot more, and teek can’t detect too tkintery ways to do things and give you
particularly good errors. In these cases, use teek’s tkinter porting guide.

1.1.6 Manual Pages

Note: This section assumes that you know the Tcl stuff explained above.

Sometimes stackoverflow answers don’t contain the best possible solution because they are written by noobs who
don’t actually know Tk and tkinter very well. I see this quite often. Some of the people who answer tkinter questions
on stackoverflow have 20+ years of Tk experience, but most answerers don’t.

If you don’t want to rely on stackoverflow or you want to do things like experienced Tk programmers do things, you
should read Tk’s manual pages. They are written for Tcl users and Tcl’s syntax is quite different from Python syntax,
so you will probably be somewhat confused at first. For example, let’s say that you don’t know how to change the text
of a label after creating it. Figure it out like this:

1. Go to teek’s label documentation by clicking this Label link. This tutorial and rest of teek’s documentation
are full of these links. Click them.

2. The Label link doesn’t say anything about changing the text afterwards, but it has a link to a manual page.
Click it.

3. In the manual page, press Ctrl+F and search for “text”. You’ll find a widget option whose “Command-Line
Name” is -text. The leading - is common in Tcl syntax, but we won’t need it in teek. So all we really need
to do is to change the 'text' widget option as shown above. We found what we were looking for.

6 Chapter 1. Tutorials and Guides

Teek Documentation

BTW

The manual page names are like ttk_label(3tk) or after(3tcl). GUI things have 3tk manual pages, and things docu-
mented in 3tcl manual pages can be also used in Tcl programs that don’t have a GUI.

If you use Linux, you can also install the manual pages on your system and read them without a web browser. For
example, this command installs them on ubuntu:

sudo apt install tcl8.6-doc tk8.6-doc

The 8.6 makes sure that you get newest manual pages available. After installing the manual pages, you can read them
like this:

man ttk_label

You can close the manual page by pressing q like quit. If you want to search, Ctrl+F won’t work, but instead you can
type /text followed by enter to search for text. All matches will be highlighted, and you can press n like next to
go to the next match.

1.1.7 Buttons and callback functions

This code displays a button. Clicking the button runs the on_click() function.

import teek

def on_click():
print("You clicked me!")

window = teek.Window("Button Example")
button = teek.Button(window, "Click me", command=on_click)
button.pack()

window.on_delete_window.connect(teek.quit)
teek.run()

Most of the code isn’t very different from our label example. Let’s go through the things that are different.

def on_click():
print("You clicked me!")

This defines a function. If you have never defined functions before, you should definitely learn that before continuing
with this tutorial. It’ll make everything a lot easier. I have written more about defining functions here.

button = teek.Button(window, "Click me", command=on_click)

Button takes a parent widget and a text, just like Label, but Button also takes a function that is called when the
button is clicked. Read that sentence carefully: Button takes a function. This is a common mistake:

button = teek.Button(..., command=on_click()) # ummm... it doesn't work like this!
→˓!

command=on_click() does not do what was intended here; command=on_click() calls the on_click
function because it has () after on_click, and when on_click has been called, it creates the button and passes
the return value of on_click to it. Be careful to pass the function itself without calling it.

1.1. Teek Tutorial 7

https://www.tcl.tk/man/tcl/TkCmd/ttk_label.htm
https://www.tcl.tk/man/tcl/TclCmd/after.htm
https://github.com/Akuli/python-tutorial/blob/master/basics/defining-functions.md

Teek Documentation

BTW

Teek lets you omit the command= part when creating buttons if you put the button text before the command, so this. . .

button = teek.Button(window, "Click me", on_click)

. . . does the same thing as this:

button = teek.Button(window, "Click me", command=on_click)

Here is another common mistake:

import time

def on_click():
print("Doing something...")
time.sleep(5)
print("Done")

Here time.sleep(5) waits for 5 seconds. If you click the button now, the GUI will be frozen for 5 seconds. The
button will look like it’s pressed down, and you can’t even close the window! This is bad, and that’s why button
callbacks must not do anything that takes longer than a tiny fraction of a second. See concurrency documentation if
you need a button callback that runs for a long time.

1.1.8 Multiple child widgets in same parent

It’s possible to put several different widgets into the same parent window with pack(), like this:

import teek

window = teek.Window("Pack Example")
teek.Label(window, "One").pack()
teek.Label(window, "Two").pack()

window.on_delete_window.connect(teek.quit)
teek.run()

The “Two” label will show up below the “One” label. If you don’t want that, you can also put the labels next to each
other:

teek.Label(window, "One").pack(side='left')
teek.Label(window, "Two").pack(side='left')

That’s correct, both of them have side='left'. This means that the first widget goes all the way to the left
edge, and the second goes to the right of that, and so on, so the widgets get stacked to the left edge. The default is
side='top', and that’s why the widgets ended up below each other.

If you need more complex layouts, you can create a Frame and pack it, and add more widgets inside that Frame, like
this:

import teek

window = teek.Window("Pack Example")

(continues on next page)

8 Chapter 1. Tutorials and Guides

Teek Documentation

(continued from previous page)

big_frame = teek.Frame(window)
big_frame.pack(fill='both', expand=True)
teek.Label(big_frame, text="Left").pack(side='left', fill='both', expand=True)
teek.Label(big_frame, text="Right").pack(side='left', fill='both', expand=True)

status_bar = teek.Label(window, "This is a status bar")
status_bar.pack(fill='x')

window.geometry(300, 200)
window.on_delete_window.connect(teek.quit)
teek.run()

This example uses plenty of things from pack(3tk), but you know how to read manual pages, so you can figure out
how it all works. If that isn’t true at all, keep reading, and I’ll explain how some of the things in the example work.

big_frame.pack(fill='both', expand=True)

This packs the big frame so that it stretches if you resize the window, and it fills as much space as possible. If you
don’t want to learn everything about pack, learn at least this “idiom”.

status_bar.pack(fill='x')

This makes the status bar fill all the space it has horizontally. Mathematicians like to call it the x direction. Use
fill='y' to fill vertically, or fill='both' to fill in both x and y directions.

window.geometry(300, 200)

This call to geometry() resizes the window so that it’s bigger by default, and you can see how the widgets got laid
out without first making the window bigger.

1.1.9 What now?

You are ready for creating a project in teek! All parts of teek’s documentation are listed at left, but here are the things
you will most likely need next:

• Widget Reference

• Geometry Managers: pack, grid, place

1.2 Porting from Tkinter

If you have some tkinter code and you would like to switch to teek, you came to the right place. This page lists
differences between tkinter and teek. You might also find this page interesting if you are an experienced tkinter
programmer.

1.2.1 Before you begin

Make sure you have good test coverage. If you don’t know what test coverage is, I hope your project is quite small. In
that case, make sure that you know how every part and feature of the GUI is supposed to work and how to check if it
works well. Running a linter like flake8 may also help, and understanding how the code works doesn’t hurt either.

Currently these tkinter widgets are missing in teek:

1.2. Porting from Tkinter 9

https://www.tcl.tk/man/tcl/TkCmd/pack.htm
http://flake8.pycqa.org/en/latest/

Teek Documentation

• tkinter.Listbox

• tkinter.Menubutton, tkinter.ttk.Menubutton

• tkinter.OptionMenu

• tkinter.PanedWindow, tkinter.ttk.Panedwindow

• tkinter.Radiobutton, tkinter.ttk.Radiobutton

• tkinter.Scale, tkinter.ttk.Scale

• tkinter.ttk.Sizegrip

• tkinter.Spinbox

• tkinter.ttk.Treeview

If the project uses some of these, you can still use them with Tcl calls. However, that’s kind of painful, so if the project
uses these widgets a lot, it’s probably best to use tkinter for now or ask me to add the widget to teek.

1.2.2 To Get Started

If you find a file that contains from tkinter import *, you should immediately fix that. It is very bad style.
Change the import to import teek, and then replace things like Label with teek.Label.

If you find code like import tkinter as tk, you can just change tkinter to teek, but I prefer changing it
to import teek and then replacing tk with teek everywhere. That way, if you see teek.Label somewhere
in the code you know right away that it’s not a tkinter label. If there is import tkinter, change it to import
teek and replace tkinter.something with teek.something everywhere.

Sometimes you may see this:

import tkinter as tk
from tkinter import ttk

Or much worse:

from tkinter import *
from tkinter.ttk import *

In these cases, you should replace both tkinter.something and tkinter.ttk.something with teek.
something and do the import teek. The teek module contains everything you need, including Ttk widgets
and a few non-Ttk widgets.

After this, try it out. It probably doesn’t work yet, so keep reading.

1.2.3 Widget Name Differences

All tkinter GUIs use a tkinter.Tk object. There is no Tk object in teek; instead, you should create a Window
object and use that. Usually you should also use Window instead of a Toplevel as explained in Window docu-
mentation. You can create as many teek windows as you want, and they actually use toplevels under the hood.

If the tkinter code creates multiple tkinter.Tk instances, it is probably broken. Replace all of them with teek.
Window .

If you have code that uses tkinter.Message, you should use a Label instead. I believe message widgets were a
thing before labels could handle multiline text, but nowadays the text of labels can contain \n characters.

10 Chapter 1. Tutorials and Guides

https://github.com/Akuli/teek/issues/new

Teek Documentation

If you have code that uses ttk.Labelframe, use LabelFrame instead. Look carefully: Labelframe and
LabelFrame are not the same. Non-ttk tkinter supports LabelFrame only, but for some reason, tkinter/ttk.
py has Labelframe in addition to LabelFrame.

1.2.4 Quitting

In tkinter, destroying the root window destroys the whole GUI and usually the program terminates soon after that. In
teek, destroying a window doesn’t quit the GUI, so instead of root.destroy() you need teek.quit().

Trying to close a teek window does nothing by default. If you want the whole program to end instead, do this:

window.on_delete_window.connect(teek.quit)

If you want to close only the window that the user is closing (which is the case for dialogs and other such things), do
this:

window.on_delete_window.connect(window.destroy)

1.2.5 Constants

Tkinter has lots of constants like tkinter.BOTH, but their values are just similar strings:

>>> import tkinter
>>> tkinter.BOTH
'both'

This means that some_widget.pack(fill=tkinter.BOTH) does the same thing as some_widget.
pack(fill='both'). Some programmers use constants like tkinter.BOTH while others prefer to just write
'both'. I think these constants are dumb, which is why teek doesn’t have them. Use strings like 'both' in teek.

1.2.6 Run

Use teek.run() instead of tkinter’s root.mainloop() or tkinter.mainloop().

1.2.7 Options

Options are used differently in tkinter and teek. For example, button['text'], button.cget('text'),
button.config('text')[-1] and button.configure('text')[-1] are all valid ways to get the text
of a button. In teek, none of these work, and you instead do button.config['text']. However, teek raises
good error messages:

>>> button = teek.Button(teek.Window(), "some text")
>>> button.cget('text')
Traceback (most recent call last):

...
TypeError: use widget.config['option'], not widget.cget('option')
>>> button['text']
Traceback (most recent call last):

...
TypeError: use widget.config['option'], not widget['option']
>>> button.config['text']
'some text'

1.2. Porting from Tkinter 11

Teek Documentation

1.2.8 Widget-specific Differences

Most widgets work more or less the same way in teek and tkinter, but not all widgets do. Some of the biggest
differences are listed here, but not everything is; refer to the documentation of the widget that is causing errors for
more details.

Button and CheckButton Tkinter buttons and checkbuttons have a command option that is set to a function that
runs when the button is clicked, but that’s a Callback object in teek:

>>> button.config['command'] = print
Traceback (most recent call last):

...
ValueError: cannot set the value of 'command', maybe use widget.config['command'].
→˓connect() instead?
>>> button.config['command'].connect(print)

This way more than one callback can be easily connected to the button.

Text and Notebook Many things are very different (read: much better and more pythonic) in teek. You probably need
to read most of teek’s text widget docs or notebook docs anyway, so I won’t even try to summarize everything
here.

Entry Instead of insert, delete and get methods, there is a settable text attribute.

1.2.9 Dialogs

Dialog functions are named differently in teek. For example, instead of filedialog.askopenfilename() you
use teek.dialog.open_file(). Unlike in tkinter, you don’t need to import anything special in order to use the
dialog functions; import teek is all you need, and after that, you can do teek.dialog.open_file().

1.2.10 Binding

Teek’s bind stuff is documented here. As you can see there, we have some differences to tkinter. First of all, if you
want anything to work at all, you need to pass event=True to bind() to get tkinter-like event objects. However,
this is a common thing to do in tkinter:

widget.bind('<SomeEvent>', lambda event: some_function())

Tkinter always gives an event argument to bind callbacks, and the lambda discards it because some_function
must be called like some_function(), not some_function(event). If you just pass event=True, you end
up with code like this. . .

widget.bind('<SomeEvent>', (lambda event: some_function()), event=True)

. . . which can be simplified a lot because not using event=True does the same thing as the lambda:

widget.bind('<SomeEvent>', some_function)

If you do need the event object, watch out for differences in the attributes. For example, tkinter’s event.x_root is
event.rootx in teek. This is for consistency with event_generate().

Note that tkinter’s bind discards all old bindings, but this doesn’t happen in teek. For example, if you do this. . .

widget.bind('<SomeEvent>', func1)
widget.bind('<SomeEvent>', func2)

12 Chapter 1. Tutorials and Guides

Teek Documentation

. . . only func2 is bound in tkinter, but both are bound in teek.

Tkinter’s bind takes an add=True argument that tells it to not forget old bindings, and you can safely get rid of it.
If you see some tkinter code that relies on the discarding behaviour, which I don’t see very often, you need to use
Widget.bindings to unbind the old function.

Speaking of unbinding, tkinter also has an unbind() method. It works like this when used correctly:

func_id = widget.bind('<SomeEvent>', func)
...
widget.unbind('<SomeEvent>', func_id)

Searching for def unbind in tkinter’s source code reveals that widget.unbind actually discards all bindings of
<SomeEvent>, and if the func_id is given, it also cleans things up. Teek does the cleanup automatically for you
when the widget is destroyed (see destroy()).

1.2.11 Widget Methods

Tkinter’s widgets have some methods that are available in all widgets, and they don’t actually do anything with the
widget. For example, any_widget.after(1000, func) runs func() in the event loop after waiting for 1
second. In teek, things that don’t need a widget in order to work are functions, not widget methods. Here is a list of
them:

Tkinter Teek
any_widget.after(milliseconds, cb) teek.after()
any_widget.after_idle(cb) teek.after_idle()
any_widget.update() teek.update()
any_widget.tk.call() teek.tcl_call()
any_widget.tk.eval() teek.tcl_eval()
any_widget.tk.createcommand() teek.create_command()
any_widget.tk.deletecommand() teek.delete_command()
any_widget.mainloop() teek.run()
root.destroy() teek.quit()

There are also some things that must be done with any_widget.tk.call() in tkinter, but teek has nicer support
for them:

Tkinter Teek
any_widget.call('tk', 'windowingsystem') teek.windowingsystem()

1.2.12 Variable Objects

DoubleVar is FloatVar in teek because not all python users know that double means a precise float in
programming languages like C. Other variable classes have same names.

There is no trace() method, but there is a write_trace attribute.

1.2.13 Font Objects

Tkinter has one font class, tkinter.font.Font, which represents a font that has a name in Tcl. There are two
font classes in teek, and usually you should use NamedFont in teek when tkinter.font.Font is used in tkinter.
See font documentation for details.

1.2. Porting from Tkinter 13

https://github.com/python/cpython/blob/master/Lib/tkinter/__init__.py

Teek Documentation

1.2.14 Tcl Calls

In tkinter, you might see code like this:

if root.tk.call('tk', 'windowingsystem') == 'aqua':
...some mac specific code...

Here root.tk.call('tk', 'windowingsystem') calls tk windowingsystem in Tcl, and that returns
'win32', 'aqua' or 'x11' as documented in tk(3tk). Notice that the return type is a string, but it’s not specified
anywhere. Teek is more explicit:

if tk.tcl_call(str, 'tk', 'windowingsystem') == 'aqua':
...

1.2 == '1.2' is false in python, but there is no distinction like that in Tcl; all objects are essentially strings, and
1.2 is literally the same thing as '1.2'. There is no good way to figure out what type tkinter’s root.tk.call
will return, and it’s easiest to try it and see.

Teek gets rid of this problem by requiring explicit return types everywhere. If you want a Tcl call to return a string,
you pass it str. See Tcl Calls for more documentation.

1.3 Concurrency

This page is all about running things concurrently in teek. That means doing something else while the GUI is running.

1.3.1 Threads

Here is some code that pastebins a Hello World to dpaste.com.

import requests
import teek

class Dpaster(teek.Frame):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

self.paste_button = teek.Button(self, "Pastebin a hello world", self.paste)
self.paste_button.pack()

self.url_label = teek.Label(self)
self.url_label.pack()

def paste(self):
self.url_label.config['text'] = "Pasting..."

api docs: http://dpaste.com/api/v2/
print("Starting to paste")
response = requests.post('http://dpaste.com/api/v2/',

data={'content': 'Hello World'})
response.raise_for_status()
url = response.text.strip()
print("Pasted successfully:", url)

(continues on next page)

14 Chapter 1. Tutorials and Guides

https://www.tcl.tk/man/tcl/TkCmd/tk.htm
http://dpaste.com/

Teek Documentation

(continued from previous page)

self.url_label.config['text'] = url

window = teek.Window("dpaster")
Dpaster(window).pack()
window.geometry(250, 100)
window.on_delete_window.connect(teek.quit)
teek.run()

Run the program. If you click the pasting button, the whole GUI freezes for a couple seconds and the button looks like
it’s pressed down, and when the pastebinning is done, everything is fine again. The freezing is not nice.

In this documentation, functions and methods that take a long time to complete are called blocking. Our paste()
method is blocking, and using a blocking function or method as a button click callback freezes things.

If you have code like this. . .

import time

def one_thing():
print("one thing")
time.sleep(1)
print("one thing")
time.sleep(1)
print("one thing")

def another_thing():
print("another thing")
time.sleep(1)
print("another thing")
time.sleep(1)
print("another thing")

one_thing()
another_thing()

. . . Python obviously doesn’t run one_thing() and another_thing() at the same time; it’ll first run
one_thing(), and when it’s done, it’ll run another_thing(). However, if we add import threading
to the top of the program and change the last 2 lines to this. . .

threading.Thread(target=one_thing).start()
another_thing()

. . . the functions will run at the same time.

Note: We are doing target=one_thing, not target=one_thing(). The () at the end of one_thing()
tell Python to run the function right away, but instead of that, we want to run it in the thread.

The good *ehm* awesome news is that threads work nicely in teek. Add import threading to the top of the file,
and add this method to the Dpaster class. . .

1.3. Concurrency 15

Teek Documentation

def start_pasting(self):
threading.Thread(target=self.paste).start()

. . . and change the line that creates self.paste_button to this:

self.paste_button = teek.Button(self, "Pastebin a hello world", self.start_pasting)

Let’s try to run the program again. Clicking the button gives this error:

Traceback (most recent call last):
...

RuntimeError: init_threads() wasn't called

Let’s fix it by adding teek.init_threads() before the line that creates window. All in all, the code looks like
this now:

import threading

import requests
import teek

class Dpaster(teek.Frame):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

self.paste_button = teek.Button(self, "Pastebin a hello world", self.start_
→˓pasting)

self.paste_button.pack()

self.url_label = teek.Label(self)
self.url_label.pack()

def start_pasting(self):
threading.Thread(target=self.paste).start()

def paste(self):
self.url_label.config['text'] = "Pasting..."

api docs: http://dpaste.com/api/v2/
print("Starting to paste")
response = requests.post('http://dpaste.com/api/v2/',

data={'content': 'Hello World'})
response.raise_for_status()
url = response.text.strip()
print("Pasted successfully:", url)

self.url_label.config['text'] = url

teek.init_threads()
window = teek.Window("dpaster")
Dpaster(window).pack()
window.geometry(250, 100)
window.on_delete_window.connect(teek.quit)
teek.run()

16 Chapter 1. Tutorials and Guides

Teek Documentation

Run the program. It works!

How does it work, and why did it freeze??

Note: This section assumes that you know event loop stuff .

Button click callbacks are ran in the event loop. If the button command takes 2 seconds or so to run, the event loop will
run it for 2 seconds, but it can’t do anything else while it’s doing that (see the event loop stuff link above to understand
why). However, start_pasting() is not blocking, and running that from the event loop is fine.

If you have used tkinter before, the above program probably looks quite wrong to you, because in tkinter, run-
ning anything like self.url_label.config['text'] = "Pasting..." in a thread is BAD. Threads and
tkinter don’t work together well, and you must not do any tkinter stuff from threads. If you wanted to write the
pastebinning program in tkinter, you would need to do quite a few things yourself:

• Create a Queue that will contain texts of self.url_label. Queues can be used from threads and from
Tk’s event loop, so we can use them to communicate between the pastebinning thread and the event loop.

• Create a method that gets a text from the queue and sets it to self.url_label.

– This method needs to use the tkinter label, so it must not be called from a thread because tkinter and threads
don’t mix well. The only other way to call it is from tkinter’s event loop.

– Because the method is called from tkinter’s event loop, it must not block; that is, it can’t wait until a
message arrives to the queue from the thread. If there are no messages in the queue, it must do nothing.

– Because the method can’t wait for messages in the thread, and it can only check if there are messages, it
must be ran repeatedly e.g. 20 times per second. The thread will then add a message to the queue, and the
queue clearing method will do something with that message soon.

– Because the method must be called 20 times per second, you must tell the event loop to run it 20 times per
second. The only way to do this is with after callbacks.

If you accidentally call a tkinter thing from a thread, you may get very weird behaviour (but in teek, you get a
RuntimeError as shown above):

• Things may work 90% of the time and break 10% of the time.

• Everything may work just fine on your computer but not on someone else’s computer.

• When things break, you get confusing error messages that don’t necessarily say anything about threads.

Furthermore, beginners often want to use threads with tkinter, and they struggle with it a lot, which is no surprise.
Threading with tkinter is hard.

Teek’s init_threads() does the hard things for you:

teek.init_threads(poll_interval_ms=50)
Allow using teek from other threads than the main thread.

This is implemented with a queue. This function starts an after callback that checks for new messages in the
queue every 50 milliseconds (that is, 20 times per second), and when another thread calls a teek function that
does a Tcl call, the information required for making the Tcl call is put to the queue and the Tcl call is done by
the after callback.

Note: After callbacks don’t work without the event loop, so make sure to run the event loop with run() after
calling init_threads().

1.3. Concurrency 17

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/exceptions.html#RuntimeError

Teek Documentation

poll_interval_ms can be given to specify a different interval than 50 milliseconds.

When a Tcl call is done from another thread, that thread blocks until the after callback has handled it, which is
slow. If this is a problem, there are two things you can do:

• Use a smaller poll_interval_ms. Watch your CPU usage though; if you make
poll_interval_ms too small, you might get 100% CPU usage when your program is doing noth-
ing.

• Try to rewrite the program so that it does less teek stuff in threads.

If you use init_threads(), you can also use this decorator:

teek.make_thread_safe(func)
A decorator that makes a function safe to be called from any thread.

Functions decorated with this always run in the event loop, and therefore in the main thread.

Most of the time you don’t need to use this yourself; teek uses this a lot internally, so most teek things are
already thread safe. However, if you have code like this. . .

def bad_func123():
func1()
func2()
func3()

. . . where func1, func2 and func3 do teek things and you need to call func123 from a thread, it’s best to
decorate func123:

@teek.make_thread_safe
def good_func123():

func1()
func2()
func3()

This may make func123 noticably faster. If a function decorated with make_thread_safe() is called
from some other thread than the main thread, it needs to communicate between the main thread and teek’s event
loop, which is slow. However, with good_func123, there isn’t much communication to do: the other thread
needs to tell the main thread to run the function, and later the main thread tells the other thread that the function
has finished running. The bad_func123 function does this 3 times, once in each line of code.

Note: Functions decorated with make_thread_safe() must not block because they are ran in the event
loop. In other words, this code is bad, because it will freeze the GUI for about 5 seconds:

@teek.make_thread_safe
def do_stuff():

time.sleep(5)

1.3.2 Letting the user know that something is happening

Here is a part of our example program above.

def __init__(self, *args, **kwargs):
...
self.paste_button = teek.Button(self, "Pastebin a hello world", self.start_

→˓pasting)

(continues on next page)

18 Chapter 1. Tutorials and Guides

Teek Documentation

(continued from previous page)

...

def start_pasting(self):
threading.Thread(target=self.paste).start()

def paste(self):
self.url_label.config['text'] = "Pasting..."
...
self.url_label.config['text'] = url

Can you see the problem? The paste button can be clicked while paste() is running in the thread. If the user does
that, we have two pastes running at the same time in different threads. That’s not nice.

A simple alternative is to make the button grayed out in the paste function:

def paste(self):
self.paste_button.state.add('disabled')
self.url_label.config['text'] = "Pasting..."
...
self.url_label.config['text'] = url
self.paste_button.state.remove('disabled')

See Widget.state for documentation about the state thing.

If you don’t want to disable widgets or you would need to disable a widget and all widgets in it, you can use Widget.
busy() instead, like this:

def paste(self):
with self.busy():

self.url_label.config['text'] = "Pasting..."
...
self.url_label.config['text'] = url

Here is the reference.

Widget.busy_hold()
See tk busy hold in busy(3tk).

New in Tk 8.6.

Widget.busy_forget()
See tk busy forget in busy(3tk).

New in Tk 8.6.

Widget.busy_status()
See tk busy status in busy(3tk).

This Returns True or False.

New in Tk 8.6.

Widget.busy()
A context manager that calls busy_hold() and busy_forget().

Example:

with window.busy():
window.busy_hold() has been called, do something
...

(continues on next page)

1.3. Concurrency 19

https://www.tcl.tk/man/tcl/TkCmd/busy.htm
https://www.tcl.tk/man/tcl/TkCmd/busy.htm
https://www.tcl.tk/man/tcl/TkCmd/busy.htm

Teek Documentation

(continued from previous page)

now window.busy_forget() has been called

For more advanced things, you can also use a separate Progressbar widget.

1.3.3 After Callbacks

Sometimes threads are overkill. Here is a clock program:

import threading
import time

import teek

class Clock(teek.Frame):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

self.label = teek.Label(self)
self.label.pack()

threading.Thread(target=self.updater_thread).start()

def updater_thread(self):
while True:

self.label.config['text'] = time.asctime()
time.sleep(1)

teek.init_threads()
window = teek.Window("Clock")
Clock(window).pack()
window.on_delete_window.connect(teek.quit)
teek.run()

BTW

If you close the window that the above program creates, you get a RuntimeError saying that init_threads()
wasn’t called, because closing the window calls quit() and init_threads() would need to be called again after
a quit(). You can make the program exit cleanly by replacing this. . .

self.label.config['text'] = time.asctime()

. . . with this:

try:
self.label.config['text'] = time.asctime()

except RuntimeError:
the program is quitting
return

Returning from the thread target will stop the thread, and Python will exit because no more threads are running.

20 Chapter 1. Tutorials and Guides

https://docs.python.org/3/library/exceptions.html#RuntimeError

Teek Documentation

The repeatedly called time.sleep(1) in updater_thread() tells you that after callbacks might be a better
alternative. They work like this:

import time

import teek

class Clock(teek.Frame):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

self.label = teek.Label(self)
self.label.pack()
self.updater_callback()

def updater_callback(self):
self.label.config['text'] = time.asctime()

tell tk to run this again after 1 second
teek.after(1000, self.updater_callback)

window = teek.Window("Clock")
Clock(window).pack()
window.on_delete_window.connect(teek.quit)
teek.run()

teek.after(1000, self.updater_callback) runs self.updater_callback() in Tk’s event loop
after 1000 milliseconds; that is, 1 second.

teek.after(ms, callback, args=(), kwargs=None)
Run callback(*args, **kwargs) after waiting for the given time.

The ms argument should be a waiting time in milliseconds, and kwargs defaults to {}. This returns a timeout
object with a cancel() method that takes no arguments; you can use that to cancel the timeout before it runs.

teek.after_idle(callback, args=(), kwargs=None)
Like after(), but runs the timeout as soon as possible.

See also after(3tcl).

It’s also possible to cancel a timeout before it runs. after() and after_idle() return timeout objects, which
have a method for canceling:

timeout_object.cancel()
Prevent this timeout from running as scheduled.

RuntimeError is raised if the timeout has already ran or it has been cancelled.

Timeout objects also have a useful string representation for debugging:

>>> teek.after(1000, print) # doctest: +ELLIPSIS
<pending 'print' timeout 'after#...'>

1.3. Concurrency 21

https://www.tcl.tk/man/tcl/TclCmd/after.htm
https://docs.python.org/3/library/exceptions.html#RuntimeError

Teek Documentation

22 Chapter 1. Tutorials and Guides

CHAPTER 2

Reference

Use this section when you want to know something about things that were not covered in the tutorial.

2.1 Geometry Managers: pack, grid, place

Geometry managers are ways to add widgets inside other widgets. For example, pack is a geometry manager. This
page contains more information about pack and two other geometry managers.

2.1.1 Pack

This is a simple geometry manager useful for laying out big things. If you want to have two big widgets next to each
other, this is the right choice.

See also:

There is a beginner-friendly introduction to pack here.

Pack options have a - in front of them in Tcl, but teek hides that, so Tcl code like -anchor center looks like
anchor='center' in teek.

Teek widgets have these methods:

teek.Widget.pack(**kwargs)
Search for pack configure in pack(3tk) for details. If you want to use the -in option, you can’t do
widget1.pack(in=widget2) because in is a reserved keyword in Python and you get a syntax error, but
teek lets you do widget1.pack(in_=widget2) instead.

teek.Widget.pack_forget()
See pack forget in pack(3tk).

teek.Widget.pack_info()
This returns the keyword arguments passed to pack() with string keys. The types of values are as follows:

• The value of 'in' is a teek widget.

23

https://www.tcl.tk/man/tcl/TkCmd/pack.htm
https://www.tcl.tk/man/tcl/TkCmd/pack.htm

Teek Documentation

• The value of 'expand' is True or False.

• The values of 'ipadx' and 'ipady' are ScreenDistance objects.

• The values of 'padx' and 'pady' are lists of ScreenDistance objects. Each list contains 1 or 2
items; see -padx in pack(3tk) for details.

• Other values are strings.

See also pack info in pack(3tk). The returned dictionary is a valid kwargs dict for pack(), so you can do
this:

pack_info = widget.pack_info()
widget.pack_forget()
...do something...
widget.pack(**pack_info)

teek.Widget.pack_slaves()
Returns a list of other Widgets packed into the widget. See pack slaves in pack(3tk) for more details.

2.1.2 Grid

This geometry manager is useful for making griddy things that would be hard or impossible to do with pack. Here is
an example:

import teek

window = teek.Window("Calculator")

rows = [
['7', '8', '9', '*', '/'],
['4', '5', '6', '+', '-'],
['1', '2', '3', None, None],
[None, None, '.', None, None],

]

for row_number, row in enumerate(rows):
for column_number, text in enumerate(row):

if text is not None:
button = teek.Button(window, text, width=3)
button.grid(row=row_number, column=column_number, sticky='nswe')

zerobutton = teek.Button(window, '0')
zerobutton.grid(row=3, column=0, columnspan=2, sticky='nswe')
equalbutton = teek.Button(window, '=')
equalbutton.grid(row=2, column=3, rowspan=2, columnspan=2, sticky='nswe')

for row_or_column in (window.grid_rows + window.grid_columns):
row_or_column.config['weight'] = 1

window.on_delete_window.connect(teek.quit)
teek.run()

Let’s go through some of that line by line.

for row_number, row in enumerate(rows):
for column_number, text in enumerate(row):

24 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/pack.htm
https://www.tcl.tk/man/tcl/TkCmd/pack.htm
https://www.tcl.tk/man/tcl/TkCmd/pack.htm

Teek Documentation

This is a way to loop over the row list with indexes. For example, if text is '*', then row_number is 0 and
column_number is 3, because text is the fourth element of the first sublist of rows.

button.grid(row=row_number, column=column_number, sticky='nswe')

The sticky='nswe' makes the button fill all the space it has in the grid cell. The n means “north” (up), w means
“west” (left), etc.

zerobutton.grid(row=3, column=0, columnspan=2, sticky='nswe')

columnspan=2 makes the button span two columns, so some of it is in one column, and rest of it is in the other.
The default is columnspan=1.

for row_or_column in (window.grid_rows + window.grid_columns):
row_or_column.config['weight'] = 1

This loops through all grid rows and columns of the widget, and makes everything stretch as the window is resized.
Comment out these lines and resize the window to understand why I did this. See Grid Row and Column Objects
below for details.

teek.Widget.grid(**kwargs)
Very similar to pack(). See grid configure in grid(3tk) for details.

teek.Widget.grid_forget()
See grid forget in grid(3tk).

teek.Widget.grid_info()
Very similar to pack_info(). The types of values are as follows:

• The value of 'in' is a teek widget.

• The values of 'ipadx' and 'ipady' are ScreenDistance objects.

• The values of 'padx' and 'pady' are lists of ScreenDistance objects. Each list contains 1 or 2
items; see -padx in pack(3tk) for details.

• The values of 'row', 'rowspan', 'column' and 'columnspan' are integers.

• Other values are strings.

teek.Widget.grid_slaves()
Similar to pack_slaves(). Use row_or_column.get_slaves() if you need the -row and -column
options of grid slaves in grid(3tk).

teek.Widget.grid_rows
teek.Widget.grid_columns

Lists of row objects or column objects.

Grid Row and Column Objects

Tk has some options and other things that can be done to rows or columns of a grid. These are represented with row
objects and column objects in teek.

>>> window = teek.Window()
>>> window.grid_rows
[]
>>> teek.Label(window, "label text").grid() # goes to row 0, column 0
>>> window.grid_rows
[<grid row 0: has a config attribute and a get_slaves() method>]

(continues on next page)

2.1. Geometry Managers: pack, grid, place 25

https://www.tcl.tk/man/tcl/TkCmd/grid.htm
https://www.tcl.tk/man/tcl/TkCmd/grid.htm
https://www.tcl.tk/man/tcl/TkCmd/pack.htm
https://www.tcl.tk/man/tcl/TkCmd/grid.htm

Teek Documentation

(continued from previous page)

>>> window.grid_columns
[<grid column 0: has a config attribute and a get_slaves() method>]
>>> window.grid_columns[0].config['weight']
0.0
>>> window.grid_columns[0].get_slaves()
[<teek.Label widget: text='label text'>]

Here is the reference:

row_or_column.config
An object that represents row or column options. Similar to Widget.config.

See grid columnconfigure and grid rowconfigure in grid(3tk) for the available options.
'weight' is a float, 'minsize' and 'pad' are ScreenDistance objects and 'uniform' is a string.

row_or_column.get_slaves()
Returns a list of widgets in the row or column.

This calls grid slaves documented in grid(3tk) with a -row or -column option.

2.1.3 Place

This geometry manager is useful for placing things relatively. For example, this puts a button right in the middle of its
parent widget:

button.place(relx=0.5, rely=0.5, anchor='center')

Here relx and rely mean “relative x” and “relative y”; that is, values between 0 and 1. The anchor='center'
says that the center of the button goes to the position given with relx and rely.

Place can be also used with absolute positions given in pixels:

100 pixels down and 200 right from top left corner of the parent widget
button.place(x=100, y=200)

Usually that’s a bad idea. 100 pixels on your screen might look different than 100 pixels on someone else’s screen
if that other system happens to use bigger fonts or something else like that. However, placing with pixels can be
useful when working with other things that use pixels. For example, if you bind some mouse stuff and the user clicks
something, you get the mouse x and y coordinates in pixels.

teek.Widget.place(**kwargs)
See place configure in place(3tk) for details. This is similar to pack().

teek.Widget.place_forget()
See place forget in place(3tk).

teek.Widget.place_info()
Very similar to pack_info() and grid_info(). The types of values are as follows:

• The value of 'in' is a teek widget.

• The values of 'width', 'height', 'x' and 'y' are ScreenDistance objects.

• The values of 'relwidth', 'relheight', 'relx' and 'rely' are floats.

• Other values are strings.

See also place info in place(3tk).

26 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/grid.htm
https://www.tcl.tk/man/tcl/TkCmd/grid.htm
https://www.tcl.tk/man/tcl/TkCmd/place.htm
https://www.tcl.tk/man/tcl/TkCmd/place.htm
https://www.tcl.tk/man/tcl/TkCmd/place.htm

Teek Documentation

teek.Widget.place_slaves()
Returns a list of other Widgets placed into the widget.

2.2 Widget Reference

This is a big list of widgets and explanations of what they do. As usual, don’t try to read all of it, unless you’re very
bored; it’s best to find what you’re looking for, and ignore rest of this.

2.2.1 Canvas Widget

Manual page: canvas(3tk)

This widget is useful for displaying drawings and other things. See examples/paint.py for an example.

Note: This widget is not a Ttk widget because there is no Ttk canvas widget. However, that’s not a problem because
usually canvas widgets contain things that shouldn’t be colored based on the current Ttk theme anyway.

Hello World!

This program displays some simple things on a canvas.

import teek

window = teek.Window()
canvas = teek.Canvas(window)
canvas.pack()

canvas.create_line(100, 100, 120, 150)
canvas.create_oval(200, 200, 250, 250)
canvas.create_rectangle(200, 100, 230, 130)

window.on_delete_window.connect(teek.quit)
teek.run()

The background color of the canvas depends on the system that this code is ran on. If you don’t want that, you can
create the canvas like canvas = teek.Canvas(window, bg='white'), for instance.

The numbers passed to create_line() and similar methods are coordinates. They work so that, for example,
(200, 100) means 200 pixels right from the left side of the canvas, and 100 pixels down from the top. The “how
much right” coordinate is called the x coordinate, and the “how much down” coordinate is called the “y coordinate”.

Note: The y coordinates work differently than they usually work in mathematics; that is, more y means down in Tk
and teek. This also means that rotations go the other way, and positive angles mean clockwise rotations in teek even
though they mean counter-clockwise rotations in mathematics.

The create_something() methods take four numbers each, because they are two pairs of (x, y) coordinates.
For example, canvas.create_rectangle(200, 100, 230, 130) means that one corner of the created
rectangle is at (200, 100) and another corner is at (230, 130). (It is actually a square, because it is 30 pixels
high and 30 pixels wide).

2.2. Widget Reference 27

https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://github.com/Akuli/teek/blob/master/examples/paint.py

Teek Documentation

Item Objects

The create_something() methods return item objects that you can keep around and do stuff with. For example,
you can do this:

>>> canvas = teek.Canvas(teek.Window())
>>> square = canvas.create_rectangle(200, 100, 230, 130)
>>> square
<rectangle canvas item at (200.0, 100.0, 230.0, 130.0)>
>>> square.config['fill'] = 'red' # this makes the square red

Or you can pass some config options to create_rectangle() directly, as usual:

>>> square = canvas.create_rectangle(200, 100, 230, 130, fill='red')
>>> square.config['fill']
<Color 'red': red=255, green=0, blue=0>

Here square is a canvas item object.

All canvas item objects have these attributes and methods:

some_canvas_item.config
This dictionary-like object is similar to the config attribute of widgets, which is explained here.

some_canvas_item.coords
A tuple of coordinates of the canvas. This can be set to move an existing canvas item without having to create a
new item.

some_canvas_item.tags
This is a set-like object of the canvas item’s tags, as strings. You can .add() and .remove() the tags, for
example.

some_canvas_item.item_type_name
The kind of the canvas item as a string, e.g. 'oval' or 'rectangle'.

some_canvas_item.delete()
This deletes the canvas item. Trying to do something with the canvas item will raise an error.

>>> circle = canvas.create_oval(200, 200, 250, 250)
>>> circle
<oval canvas item at (200.0, 200.0, 250.0, 250.0)>
>>> circle.delete()
>>> circle
<deleted oval canvas item>

some_canvas_item.find_above()
some_canvas_item.find_below()

These return another canvas item object. See pathName find and the above and below parts of
pathName addtag in canvas(3tk) for more information.

The type of the canvas items is accessible as the_canvas_widget.Item. It’s useful for isinstance()
checks, but not much else:

>>> isinstance(circle, canvas.Item)
True
>>> isinstance('lolwat', canvas.Item)
False

Note that this is different for each canvas; the items of two different canvases are not of the same type.

28 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://docs.python.org/3/library/functions.html#isinstance

Teek Documentation

Tags

If you have lots of related canvas items, you can just keep a list of them and do something to each item in that list.
Alternatively, you can use tags to mark the canvas items, and then do something to all items tagged with a specific tag.
Like this:

>>> canvas = teek.Canvas(teek.Window())
>>> line = canvas.create_line(100, 100, 120, 150)
>>> circle = canvas.create_oval(200, 200, 250, 250)
>>> square = canvas.create_rectangle(200, 100, 230, 130)
>>> canvas.find_withtag('lol')
[]
>>> circle.tags.add('lol')
>>> canvas.find_withtag('lol') # returns a list that contains the circle
[<oval canvas item at (200.0, 200.0, 250.0, 250.0)>]

Canvas Widget Methods and Attributes

class teek.Canvas(*args, **kwargs)
This is the canvas widget.

Manual page: canvas(3tk)

create_line(*x_and_y_coords, **kwargs)
create_oval(x1, y1, x2, y2, **kwargs)
create_rectangle(x1, y1, x2, y2, **kwargs)

These create and return new canvas items. See the appropriate sections of canvas(3tk) for details, e.g.
RECTANGLE ITEMS for create_rectangle().

find_all()
Returns a list of all items on the canvas.

find_closest(x, y, *args)
Returns the canvas item that is closest to the given coordinates.

See the closest documentation of pathName addtag in canvas(3tk) for details.

find_enclosed(x1, y1, x2, y2)
Returns a list of canvas items.

See the enclosed documentation of pathName addtag in canvas(3tk) for details.

find_overlapping(x1, y1, x2, y2)
Returns a list of canvas items.

See the enclosed documentation of pathName addtag in canvas(3tk) for details.

find_withtag(tag_name)
Returns a list of canvas items that have the given tag.

The tag name is given as a string. See the enclosed documentation of pathName addtag in can-
vas(3tk) for details.

2.2.2 Menu Widget

Manual page: menu(3tk)

You can use menu widges for a few different things:

2.2. Widget Reference 29

https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://www.tcl.tk/man/tcl/TkCmd/canvas.htm
https://www.tcl.tk/man/tcl/TkCmd/menu.htm

Teek Documentation

• Menu bars are menus that are typically displayed at the top of a window, or top of the screen if you are using
e.g. Mac OSX.

• Pop-up menus open when the user e.g. right-clicks something.

Here is an example of a menu bar:

import teek

window = teek.Window()

def hello():
print("hello")

window.config['menu'] = teek.Menu([
teek.MenuItem("File", [

teek.MenuItem("New", hello),
teek.MenuItem("Open", hello),
teek.MenuItem("Save", hello),
teek.MenuItem("Quit", hello),

]),
teek.MenuItem("Edit", [

teek.MenuItem("Cut", hello),
teek.MenuItem("Copy", hello),
teek.MenuItem("Paste", hello),

]),
])

window.geometry(300, 200)
window.on_delete_window.connect(teek.quit)
teek.run()

As you can see, Menu takes one argument, which is a list of MenuItem objects. This example uses two kinds of
menu items; some menu items just call the hello() function when they are clicked, while the “File” and “Edit”
items display submenus. There are more details about different kinds of items below.

Here is a pop-up menu example. See bind documentation for more details about the binding stuff.

import teek

window = teek.Window()

def hello():
print("hello")

menu = teek.Menu([
teek.MenuItem("Cut", hello),
teek.MenuItem("Copy", hello),
teek.MenuItem("Paste", hello),

])

def on_right_click(event):
menu.popup(event.rootx, event.rooty)

if teek.windowingsystem() == 'aqua':
running on Mac OSX, there's no right-click so this must be done a bit
differently
window.bind('<Button-2>', on_right_click, event=True)
window.bind('<Control-Button-1>', on_right_click, event=True)

(continues on next page)

30 Chapter 2. Reference

Teek Documentation

(continued from previous page)

else:
window.bind('<Button-3>', on_right_click, event=True)

window.geometry(300, 200)
window.on_delete_window.connect(teek.quit)
teek.run()

I found the Mac OSX specific code from here.

Menu widgets are not Ttk widgets. If you don’t know what that means, you should go here and learn. The only
practical thing I can think of right now is that menus don’t have a state attribute.

Creating Menu Items

There are a few different ways to create instances of MenuItem. Here label must be a string.

• MenuItem() creates a separator.

• MenuItem(label, function) creates a command item that runs function() when it’s clicked. See
also Button.

• MenuItem(label, checked_var) creates a checkbutton menu item. The checked_var must be
a BooleanVar. See also Checkbutton.

• MenuItem(label, string_var, value) creates a radiobutton menu item. Use this for letting
the user choose one of multiple options. Clicking the item sets value to string_var. The string_var
must be a StringVar object, and value must be a string.

• MenuItem(label, menu) creates a cascade menu item; that is, it displays a submenu with the items of
menu in it. The menu must be a Menu widget.

• MenuItem(label, item_list) is a handy way to create a new Menu and add it as a cascade item as
explained above.

You can also pass options as keyword arguments in any of the above forms. The available options are documented as
MENU ENTRY OPTIONS in menu(3tk). For example, instead of this. . .

MenuItem("Copy", do_the_copy)

. . . you probably want to do something like this:

MenuItem("Copy", do_the_copy, accelerator='Ctrl+C')

Note that this does not bind anything automatically, so you need to do that yourself if want that Ctrl+C actually does
something.

Here is an example that demonstrates most things. See StringVar and BooleanVar documentation for more info
about them.

import teek

def on_click():
print("clicked")

def on_check(is_checked):
print("is it checked now?", is_checked)

(continues on next page)

2.2. Widget Reference 31

https://books.google.fi/books?id=BWf6mdwHjDMC&pg=PT392&lpg=PT392&dq=tk_popup+vs+post&source=bl&ots=n32EYTF27b&sig=V0xXtCqHmKKa37BRNCdPk6unhr4&hl=fi&sa=X&ved=2ahUKEwikwa7A0pzdAhVKCCwKHSeNCa4Q6AEwBHoECAYQAQ#v=onepage&q=tk_popup%20vs%20post&f=false
https://www.tcl.tk/man/tcl/TkCmd/menu.htm

Teek Documentation

(continued from previous page)

def on_choice(choice):
print("chose", repr(choice))

window = teek.Window()

submenu = teek.Menu([
teek.MenuItem("Asd", on_click),
teek.MenuItem("Toot", on_click),

])

check_var = teek.BooleanVar()
check_var.write_trace.connect(on_check)
choice_var = teek.StringVar()
choice_var.write_trace.connect(on_choice)

window.config['menu'] = teek.Menu([
teek.MenuItem("Stuff", [

teek.MenuItem("Click me", on_click),
teek.MenuItem("Check me", check_var),
teek.MenuItem("More stuff", submenu),
teek.MenuItem(), # separator
teek.MenuItem("Choice 1", choice_var, "one"),
teek.MenuItem("Choice 2", choice_var, "two"),
teek.MenuItem("Choice 3", choice_var, "three"),

]),
])

window.geometry(300, 200)
window.on_delete_window.connect(teek.quit)
teek.run()

Reference

class teek.Menu(items=(), **kwargs)
This is the menu widget.

The items should be an iterable of MenuItem objects, and it’s treated so that this. . .

menu = teek.Menu([
teek.MenuItem("Click me", print),
teek.MenuItem("No, click me instead", print),

])

. . . does the same thing as this:

menu = teek.Menu()
menu.append(teek.MenuItem("Click me", print))
menu.append(teek.MenuItem("No, click me instead", print))

Menu widgets behave like lists of menu items, so if you can do something to a list of MenuItem objects, you
can probably do it directly to a Menu widget as well.

However, menu widgets don’t support slicing, like lists do:

32 Chapter 2. Reference

Teek Documentation

>>> menu = teek.Menu([
... teek.MenuItem("Click me", print),
...])
>>> menu.append(teek.MenuItem("No, click me instead", print))
>>> menu
<teek.Menu widget: contains 2 items>
>>> menu[0] # this works
<MenuItem('Click me', <built-in function print>): type='command', added to a menu>
>>> for item in menu: # this works
... print(item)
...
<MenuItem('Click me', <built-in function print>): type='command', added to a menu>
<MenuItem('No, click me instead', <built-in function print>): type='command',
→˓added to a menu>
>>> menu[:2] # but this doesn't work
Traceback (most recent call last):
...

TypeError: slicing a Menu widget is not supported
>>> list(menu)[:2] # workaround # doctest: +ELLIPSIS
[<MenuItem(...): ...>, <MenuItem(...): ...>]

Menu objects assume that nothing changes the underlying Tk menu widget without the Menu object. For
example:

>>> menu = teek.Menu()
>>> command = menu.to_tcl()
>>> command # doctest: +SKIP
'.menu1'
>>> # DON'T DO THIS, this is a bad idea
>>> teek.tcl_eval(None, '%s add checkbutton -command {puts hello}' % command)
>>> len(menu) # the menu widget doesn't know that we added an item
0

If you don’t know what tcl_eval() does, you don’t need to worry about doing this accidentally.

Manual page: menu(3tk)

popup(x, y, menu_item=None)
Displays the menu on the screen.

x and y are coordinates in pixels, relative to the screen. See tk_popup(3tk) for details. If menu_item is
given, its index is passed to tk_popup(3tk).

There are two ways to show popup menus in Tk. This is one of them, and post is another. I spent a while
trying to find something that explains the difference, and the best thing I found is this book. The book uses
tk_popup, and one of the authors is John Ousterhout, the creator of Tcl and Tk.

class teek.MenuItem(*args, **kwargs)
Represents an item of a menu. See Creating Menu Items for details about the arguments.

Tk’s manual pages call these things “menu entries” instead of “menu items”, but I called them items to avoid
confusing these with Entry .

There are two kinds of MenuItem objects:

• Menu items that are not in any Menu widget because they haven’t been added to a menu yet, or they
have been removed from a menu. Trying to do something with these menu items will likely raise a
RuntimeError.

• Menu items that are currently in a Menu.

2.2. Widget Reference 33

https://www.tcl.tk/man/tcl/TkCmd/menu.htm
https://www.tcl.tk/man/tcl/TkCmd/popup.htm
https://www.tcl.tk/man/tcl/TkCmd/popup.htm
https://books.google.fi/books?id=BWf6mdwHjDMC&printsec=frontcover&hl=fi#v=onepage&q&f=false
https://docs.python.org/3/library/exceptions.html#RuntimeError

Teek Documentation

Here’s an example:

>>> item = teek.MenuItem("Click me", print)
>>> item.config['label'] = "New text"
Traceback (most recent call last):

...
RuntimeError: the MenuItem hasn't been added to a Menu yet
>>> menu = teek.Menu()
>>> menu.append(item)
>>> item.config['label'] = "New text"
>>> item.config['label']
'New text'

config
This attribute is similar to Widget.config. See MENU ENTRY OPTIONS in menu(3tk).

The types of the values are the same as for similar widgets. For example, the 'command' of a Button
widget is a Callback object connected to a function passed to Button, and so is the 'command' of
teek.MenuItem("Click me", some_function).

type
This is a string. Currently the possible values are 'separator', 'checkbutton', 'command',
'cascade' and 'radiobutton' as documented above. Don’t set this attribute yourself.

2.2.3 Notebook Widget

Manual page: ttk_notebook(3tk)

This widget is useful for creating tabs as in the tabs of your web browser, not \t characters. Let’s look at an example.

import teek

window = teek.Window("Notebook Example")
notebook = teek.Notebook(window)
notebook.pack(fill='both', expand=True)

for number in [1, 2, 3]:
label = teek.Label(notebook, "Hello {}!".format(number))
tab = teek.NotebookTab(label, text="Tab {}".format(number))
notebook.append(tab)

window.geometry(300, 200)
window.on_delete_window.connect(teek.quit)
teek.run()

This program displays a notebook widget with 3 tabs. Let’s go trough some of the code.

label = teek.Label(notebook, "Hello {}!".format(number))

The label is created as a child widget of the notebook, because it will be added to the notebook eventually. However,
we don’t use a geometry manager because the notebook itself handles showing the widget.

tab = teek.NotebookTab(label, text="Tab {}".format(number))

We need to create a NotebookTab object in order to add a tab to the notebook. The NotebookTab objects
themselves are not widgets. A NotebookTab represents a widget and its tab options like text.

34 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/menu.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_notebook.htm

Teek Documentation

notebook.append(tab)

Lists also have an append method, and this is no coincidence. Notebook widgets behave like lists, and if you can
do something to a list, you can probably do it to a notebook as well. However, there are a few things you can’t do to
notebook widgets, but you can do to lists:

• You can’t put any objects you want into a Notebook. All the objects must be NotebookTabs.

• You can’t slice notebooks like notebook[1:]. However, you can get a list of all tabs in the notebook with
list(notebook) and then slice that.

• You can’t sort notebooks like notebook.sort(). However, you can do sorted(notebook) to get a
sorted list of NotebookTabs, except that it doesn’t quite work because tab objects can’t be compared with
each other. Something like sorted(notebook, key=(lambda tab: tab.config['text']))
might be useful though.

• You can’t add the same NotebookTab to the notebook twice, and in fact, you can’t create two
NotebookTabs that represent the same widget, so you can’t add the same widget to the notebook as two
different tabs.

Note that instead of this. . .

label = teek.Label(notebook, "Hello {}!".format(number))
tab = teek.NotebookTab(label, text="Tab {}".format(number))
notebook.append(tab)

. . . you can also do this:

notebook.append(
teek.NotebookTab(

teek.Label(notebook, "Hello {}!".format(number)),
text="Tab {}".format(number)

)
)

I recommend using common sense here. The first alternative is actually only half as many lines of code as the second
one, even though it uses more variables. Try to keep the code readable, as usual.

Here is some reference:

class teek.Notebook(parent, **kwargs)
This is the notebook widget.

If you try to add a tab that is already in the notebook, that tab will be moved. For example:

>>> notebook = teek.Notebook(teek.Window())
>>> tab1 = teek.NotebookTab(teek.Label(notebook, text="1"), text="One")
>>> tab2 = teek.NotebookTab(teek.Label(notebook, text="2"), text="Two")
>>> notebook.extend([tab1, tab2])
>>> list(notebook) # doctest: +NORMALIZE_WHITESPACE
[NotebookTab(<teek.Label widget: text='1'>, text='One'),
NotebookTab(<teek.Label widget: text='2'>, text='Two')]

>>> notebook.append(notebook[0])
>>> list(notebook) # doctest: +NORMALIZE_WHITESPACE
[NotebookTab(<teek.Label widget: text='2'>, text='Two'),
NotebookTab(<teek.Label widget: text='1'>, text='One')]

For doing advanced magic, you can create a new class that inherits from Notebook. Here are some facts that
can be useful when deciding which methods to override:

2.2. Widget Reference 35

Teek Documentation

• Override __delitem__() to customize removing tabs from the notebook. A deletion like del
notebook[index] does notebook.__delitem__(index), which calls pathName forget
documented in ttk_notebook(3tk). All other kinds of deletions call __delitem__ as well.

• Override insert() if you want to customize adding new tabs to the notebook. The insert method is
called every time when a new tab is added with any method. Make sure that your override is compatible
with the insert() method of collections.abc.MutableSequence, and make sure that only
the order of the tabs changes if the new tab is already in the notebook.

• Bind to <<NotebookTabChanged>> if you want to customize what happens when a different tab is
selected. That runs when the user changes a tab or the tab is changed with the selected_tab property.
<<NotebookTabChanged>> is documented in the VIRTUAL EVENTS section of ttk_notebook(3tk).

As usual, use super() when overriding.

Manual page: ttk_notebook(3tk)

append_and_select(tab)
A convenient way to add a tab to the notebook and select it.

notebook.append_and_select(tab) is same as:

notebook.append(tab)
notebook.selected_tab = tab

get_tab_by_widget(widget)
Finds a NotebookTab object by the widget attribute.

If there is no tab with the given widget, a new tab is created.

>>> notebook = teek.Notebook(teek.Window())
>>> label = teek.Label(notebook, text='lol')
>>> tab = teek.NotebookTab(label)
>>> notebook.append(tab)
>>> tab
NotebookTab(<teek.Label widget: text='lol'>)
>>> notebook.get_tab_by_widget(label)
NotebookTab(<teek.Label widget: text='lol'>)

move(tab, new_index)
Move a tab so that after calling this, self[new_index] is tab.

The new index may be negative. IndexError is raised if the index is not in the correct range.

selected_tab
This is the tab that the user is currently looking at.

This is None if there are no tabs in the notebook. You can set this to any other tab in the notebook to
change the currently selected tab.

class teek.NotebookTab(widget, **kwargs)
Represents a tab that is in a notebook, or is ready to be added to a notebook.

The widget must be a child widget of a Notebook widget. Each NotebookTab belongs to the widget’s
parent notebook; for example, if you create a tab like this. . .

tab = teek.NotebookTab(teek.Label(asd_notebook, "hello"))

. . . then the tab cannot be added to any other notebook widget than asd_notebook, because asd_notebook
is the parent widget of the label.

36 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/ttk_notebook.htm
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence
https://www.tcl.tk/man/tcl/TkCmd/ttk_notebook.htm
https://docs.python.org/3/library/functions.html#super
https://www.tcl.tk/man/tcl/TkCmd/ttk_notebook.htm
https://docs.python.org/3/library/exceptions.html#IndexError

Teek Documentation

Most methods raise RuntimeError if the tab has not been added to the notebook yet. This includes doing
pretty much anything with config.

For convenience, options can be passed when creating a NotebookTab, so that this. . .

notebook.append(teek.NotebookTab(some_widget, text="Tab Title"))

. . . does the same thing as this:

tab = teek.NotebookTab(some_widget, text="Tab Title")
notebook.append(tab)
tab.config['text'] = "Tab Title"

There are never multiple NotebookTab objects that represent the same tab.

config
Similar to the config attribute that widgets have. The available options are documented as TAB
OPTIONS in ttk_notebook(3tk). Attempting to use this raises RuntimeError if the tab hasn’t been
added to the notebook yet.

widget
This attribute and initialization argument is the widget in the tab. It should be a child widget of the
notebook. Use tab.widget.parent to access the Notebook that the tab belongs to.

initial_options
A dict of keyword arguments passed to NotebookTab. When the tab is added to the notebook for the first
time, config is updated from this dict.

hide()
Call pathName hide documented in ttk_notebook(3tk).

Use unhide() to make the tab visible again. RuntimeError is raised if the tab has not been added to
a notebook.

unhide()
Undo a hide() call.

2.2.4 Text Widget

Manual page: text(3tk)

This widget is useful for displaying text that the user should be able to edit. The text can contain multiple lines. Use
Entry if the text is just 1 line, or Label if you don’t want the user to be able to edit the text.

Note: This widget is not a Ttk widget because there is no Ttk text widget. However, that’s not a problem because
usually text widgets are configured to have custom colors anyway instead of using the Ttk theme’s colors. For example,
my editor lets the user change the colors of the text widget by selecting a color theme from a menu. Only the text
widget colors change, and Ttk widgets are not affected by that.

Hello World!

import teek

window = teek.Window()
text = teek.Text(window)

(continues on next page)

2.2. Widget Reference 37

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://www.tcl.tk/man/tcl/TkCmd/ttk_notebook.htm
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://www.tcl.tk/man/tcl/TkCmd/ttk_notebook.htm
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://github.com/Akuli/porcupine

Teek Documentation

(continued from previous page)

text.pack()
text.insert(text.start, 'Hello World!')

window.on_delete_window.connect(teek.quit)
teek.run()

This program displays a window with a Hello World! text in it displayed using a monospace font. It lets you edit
the text.

There is more example code in examples/text.py.

TextIndex Objects

In the above example, we used Text.insert(), and we told it to insert the hello world to the beginning of the text
widget by passing it text.start. Here text.start was a text index namedtuple:

>>> window = teek.Window()
>>> text = teek.Text(window)
>>> text.start
TextIndex(line=1, column=0)

Note: Line numbers start at 1, and columns start at 0. Tk does this too, and teek doesn’t hide it because it is very
common to call the first line “line 1”. . .

Traceback (most recent call last):
File "my_file.py", line 1, in <module>
first line of code

...

. . . but it’s just as common to start column numbering at 0, just like string indexing in general.

Avoid working with 0-based line numbers if you can. That way your teek code will probably be simpler and less
confusing.

The text indices can do everything that namedtuples can do.

>>> text.start.line # do this if you need only line or column
1
>>> text.start.column
0
>>> line, column = text.start # do this if you need both
>>> line
1
>>> column
0

In general, they behave like tuples:

>>> for lol in text.start:
... print(lol)
...
1
0

(continues on next page)

38 Chapter 2. Reference

https://github.com/Akuli/teek/blob/master/examples/text.py
https://docs.python.org/3/library/collections.html#collections.namedtuple

Teek Documentation

(continued from previous page)

>>> list(text.start)
[1, 0]

There is also text.end, which is the text index of the end of the text widget:

>>> text.end
TextIndex(line=1, column=0)
>>> text.end == text.start # there's nothing in this text widget yet
True
>>> text.insert(text.start, 'hello')
>>> text.end
TextIndex(line=1, column=5)
>>> text.end == text.start
False
>>> text.insert(text.end, '\nsome text') # now there are 2 lines of text
>>> text.end
TextIndex(line=2, column=9)
>>> text.get(text.start, text.end)
'hello\nsome text'

The indexes may be out of bounds, but that does not create errors:

>>> text.TextIndex(1000, 1000)
TextIndex(line=1000, column=1000)
>>> text.get(text.start, text.TextIndex(1000, 1000))
'hello\nsome text'
>>> text.TextIndex(1000, 1000).between_start_end()
TextIndex(line=2, column=9)

The text index class can be accessed as some_text_widget.TextIndex:

>>> text.TextIndex(1, 0)
TextIndex(line=1, column=0)
>>> isinstance('lol', text.TextIndex)
False

The TextIndex classes are also valid type specifications.

Text indices have the following attributes and methods:

some_text_index.forward(chars=0, indices=0, lines=0)
Return a new text index after this index (or before, if the arguments are negative, or the same index if all
arguments are zero). All arguments must be integers, and given as keyword arguments. Search for + count in
text(3tk) for an explanation of what each argument does.

>>> text.get(text.start, text.end)
'hello\nsome text'
>>> text.start.forward(chars=3)
TextIndex(line=1, column=3)
>>> text.start.forward(chars=7) # goes over a newline character
TextIndex(line=2, column=1)

The returned indexes are always converted to be between start and end with between_start_end():

>>> text.start.forward(chars=1000) # won't go past end of text widget
TextIndex(line=2, column=9)

2.2. Widget Reference 39

https://www.tcl.tk/man/tcl/TkCmd/text.htm

Teek Documentation

some_text_index.back(chars=0, indices=0, lines=0)
Like forward(), but goes back instead of forward.

some_text_index.linestart()
some_text_index.lineend()
some_text_index.wordstart()
some_text_index.wordend()

These return new text indices. Search for e.g. linestart in text(3tk) for details.

some_text_index.between_start_end()
If the text index is before start or after end, this returns start or end, respectively. Otherwise the text
index is returned as is.

>>> text.TextIndex(1000, 1000)
TextIndex(line=1000, column=1000)
>>> text.TextIndex(1000, 1000).between_start_end()
TextIndex(line=2, column=9)
>>> text.end
TextIndex(line=2, column=9)

Tip: Text indices are usually namedtuples, but methods that take text indices as arguments (e.g. insert()) can
also take regular (line, column) tuples.

Marks

If you have a text widget that contains hello world, the position just before w changes if you change hello to
something else, or if the user edits the text widget’s content:

>>> text.replace(text.start, text.end, "hello world")
>>> text.get(text.start, text.end)
'hello world'
>>> before_w = text.TextIndex(1, 6)
>>> before_w
TextIndex(line=1, column=6)
>>> text.get(before_w, text.end)
'world'
>>> text.replace(text.start, text.start.forward(chars=5), 'hi')
>>> text.get(text.start, text.end) # hello was replaced with hi
'hi world'
>>> text.get(before_w, text.end) # but before_w didn't update!
'ld'
>>> before_w
TextIndex(line=1, column=6)

We can solve this problem by adding a mark:

>>> text.replace(text.start, text.end, "hello world")
>>> text.marks['before_w'] = text.TextIndex(1, 6)
>>> text.get(text.marks['before_w'], text.end)
'world'
>>> text.replace(text.start, text.start.forward(chars=5), 'hi')
>>> text.get(text.marks['before_w'], text.end)
'world'
>>> text.get(text.start, text.end)
'hi world'

40 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/text.htm

Teek Documentation

Marks move with the text as the text before them is changed. Text.marks is a dictionary-like object with mark
name strings as keys and index objects as values. There is also a special 'insert' mark that represents the cursor
position:

move cursor to new_cursor_pos
text.marks['insert'] = new_cursor_pos

There are more details about marks in the MARKS section of text(3tk).

Tags

You can use tags to change things like color of some of the text without changing all of it. For example, this code
displays a Hello World with a red Hello and a green World:

import teek

window = teek.Window("Text Widget Demo")

text = teek.Text(window)
text.pack(fill='both', expand=True)
text.insert(text.start, "hello world")

hello_tag = text.get_tag('hello_tag')
hello_tag['foreground'] = teek.Color('red')
hello_tag.add(text.start, text.start.forward(chars=len('hello')))

world_tag = text.get_tag('world_tag')
world_tag['foreground'] = teek.Color('green')
world_tag.add(text.end.back(chars=len('world')), text.end)

window.on_delete_window.connect(teek.quit)
teek.run()

Each tag has a name which is mostly useful for debugging. If you want to create a tag, call get_tag()with whatever
name you want; a new tag is created if a tag with the given name doesn’t exist yet.

>>> text.get_tag('hello_tag')
<Text widget tag 'hello_tag'>

Tag objects behave like config objects, so you can e.g. change their options with their dictionary-like behaviour.
See TAGS in text(3tk) for a list of supported options. As usual, the options are given without a leading -, like
'foreground' instead of '-foreground'.

There is a special tag named 'sel' that represents the currently selected text.

Tag objects have these attributes and methods. Search for pathName tag in text(3tk) for more information about
them.

some_tag.name
The Tk name of the tag, as a string.

some_tag.add(index1, index2)
Add this tag to text between the given indices.

some_tag.delete()
Remove this tag from everywhere in the text widget, and forget all configuration options the tag has been given.

2.2. Widget Reference 41

https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://www.tcl.tk/man/tcl/TkCmd/text.htm

Teek Documentation

Note: delete() and remove() do different things.

some_tag.remove(index1=None, index2=None)
Remove this tag from the text widget between the given indices. index1 defaults to start, and index2
defaults to end.

some_tag.to_tcl()
Returns some_tag.name. See Python to Tcl conversion.

some_tag.ranges()
Returns a list of (start_index, end_index) pairs that describe where the tag has been added. The
indexes are index objects.

some_tag.prevrange(index1, index2=None)
some_tag.nextrange(index1, index2=None)

These return the previous or next (start_index, end_index) pair. See ranges() and text(3tk).

some_tag.bind(sequence, func, *, event=False)

some_tag.bindings
These allow you to do tag-specific bindings.

some_tag.lower(other_tag=None)
some_tag.raise_(other_tag=None)

These call tag lower and tag raise documented in text(3tk). The raise method is called raise_ instead
of raise because raise is not a valid method name in Python.

For example, if you have code like this. . .

import teek

text = teek.Text(teek.Window())
text.pack()

red_tag = text.get_tag('red')
blue_tag = text.get_tag('blue')
red_tag['foreground'] = 'red'
blue_tag['foreground'] = 'blue'

text.insert(text.start, 'asdasdasd', [red_tag, blue_tag])

. . . then the asdasdasd text has two tags that specify different foreground colors. If you want red asdasdasd, the
red tag should be above the blue tag, so you need to do red_tag.raise_(blue_tag) or blue_tag.
lower(red_tag).

Text Widget Methods and Attributes

class teek.Text(parent, **kwargs)
This is the text widget.

Manual page: text(3tk)

start
end

TextIndex objects that represents the start and end of the text.

42 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://www.tcl.tk/man/tcl/TkCmd/text.htm

Teek Documentation

Tip: Use textwidget.end.line to count the number of lines of text in the text widget.

Note that end changes when the text widget’s content changes:

>>> window = teek.Window()
>>> text = teek.Text(window)
>>> text.end
TextIndex(line=1, column=0)
>>> old_end = text.end
>>> text.insert(text.end, 'hello')
>>> text.end
TextIndex(line=1, column=5)
>>> old_end
TextIndex(line=1, column=0)
>>> text.get(old_end, text.end)
'hello'

Tk has a concept of an invisible newline character at the end of the widget. In pure Tcl or in tkinter, getting
the text from beginning to end returns the text in the widget plus a \n, which is why you almost always
need to do end - 1 char instead of just end. Teek doesn’t do that because 99% of the time it’s
not useful and 1% of the time it’s confusing to people reading the code, so text.get(text.start,
text.end) doesn’t return anything that is not visible in the text widget.

marks
A dictionary-like object with mark names as keys and index objects as values. See Marks.

xview(*args)
yview(*args)

These call pathName xview and pathName yview as documented in text(3tk). Pass string
arguments to these methods to invoke the subcommands. For example, text_widget.
yview('moveto', 1) scrolls to end vertically.

If no arguments are given, these methods return a two-tuple of floats (see the manual page); otherwise,
None is returned.

delete(index1, index2)
See text(3tk) and insert().

get(index1=None, index2=None)
Return text in the widget.

If the indexes are not given, they default to the beginning and end of the text widget, respectively.

get_all_tags(index=None)
Return all tags as tag objects.

See pathName tag names in text(3tk) for more details.

get_tag(name)
Return a tag object by name, creating a new one if needed.

insert(index, text, tag_list=())
Add text to the widget.

The tag_list can be any iterable of tag name strings or tag objects.

replace(index1, index2, new_text, tag_list=())
See text(3tk) and insert().

2.2. Widget Reference 43

https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://www.tcl.tk/man/tcl/TkCmd/text.htm

Teek Documentation

see(index)
Scroll so that an index is visible.

See text(3tk) for details.

class teek.Widget(parent, **kwargs)
This is a base class for all widgets.

All widgets inherit from this class, and they have all the attributes and methods documented here.

Don’t create instances of Widget yourself like Widget(...); use one of the classes documented below
instead. However, you can use Widget with isinstance(); e.g. isinstance(thingy, teek.
Widget) returns True if thingy is a teek widget.

config
A dict-like object that represents the widget’s options.

>>> window = teek.Window()
>>> label = teek.Label(window, text='Hello World')
>>> label.config
<a config object, behaves like a dict>
>>> label.config['text']
'Hello World'
>>> label.config['text'] = 'New Text'
>>> label.config['text']
'New Text'
>>> label.config.update({'text': 'Even newer text'})
>>> label.config['text']
'Even newer text'
>>> import pprint
>>> pprint.pprint(dict(label.config)) # prints everything nicely #
→˓doctest: +ELLIPSIS
{...,
'text': 'Even newer text',
...}

state
Represents the Ttk state of the widget. The state object behaves like a set of strings. For exam-
ple, widget.state.add('disabled') makes a widget look like it’s grayed out, and widget.
state.remove('disabled') undoes that. See STATES in ttk_intro(3tk) for more details about
states.

Note: Only Ttk widgets have states, and this attribute is set to None for non-Ttk widgets. If you don’t
know what Ttk is, you should read about it in the teek tutorial. Most teek widgets are ttk widgets, but some
aren’t, and that’s mentioned in the documentation of those widgets.

tk_class_name
Tk’s class name of the widget class, as a string.

This is a class attribute, but it can be accessed from instances as well:

>>> text = teek.Text(teek.Window())
>>> text.tk_class_name
'Text'
>>> teek.Text.tk_class_name
'Text'

44 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/text.htm
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/stdtypes.html#set
https://www.tcl.tk/man/tcl/TkCmd/ttk_intro.htm

Teek Documentation

Note that Tk’s class names are sometimes different from the names of Python classes, and this attribute
can also be None in some special cases.

>>> teek.Label.tk_class_name
'TLabel'
>>> class AsdLabel(teek.Label):
... pass
...
>>> AsdLabel.tk_class_name
'TLabel'
>>> print(teek.Window.tk_class_name)
None
>>> print(teek.Widget.tk_class_name)
None

command_list
A list of command strings from create_command().

Append a command to this if you want the command to be deleted with delete_command() when the
widget is destroyed (with e.g. destroy()).

destroy()
Delete this widget and all child widgets.

Manual page: destroy(3tk)

Note: Don’t override this in a subclass. In some cases, the widget is destroyed without a call to this
method.

>>> class BrokenFunnyLabel(teek.Label):
... def destroy(self):
... print("destroying")
... super().destroy()
...
>>> BrokenFunnyLabel(teek.Window()).pack()
>>> teek.quit()
>>> # nothing was printed!

Use the <Destroy> event instead:

>>> class WorkingFunnyLabel(teek.Label):
... def __init__(self, *args, **kwargs):
... super().__init__(*args, **kwargs)
... self.bind('<Destroy>', self._destroy_callback)
... def _destroy_callback(self):
... print("destroying")
...
>>> WorkingFunnyLabel(teek.Window()).pack()
>>> teek.quit()
destroying

focus(*, force=False)
Focuses the widget with focus(3tk).

If force=True is given, the -force option is used.

classmethod from_tcl(path_string)
Creates a widget from a Tcl path name.

2.2. Widget Reference 45

https://www.tcl.tk/man/tcl/TkCmd/destroy.htm
https://www.tcl.tk/man/tcl/TkCmd/focus.htm

Teek Documentation

In Tcl, widgets are represented as commands, and doing something to the widget invokes the command.
Use this method if you know the Tcl command and you would like to have a widget object instead.

This method raises TypeError if it’s called from a different Widget subclass than what the type of the
path_string widget is:

>>> window = teek.Window()
>>> teek.Button.from_tcl(teek.Label(window).to_tcl()) # doctest: +ELLIPSIS
Traceback (most recent call last):

...
TypeError: '...' is a Label, not a Button

to_tcl()
Returns the widget’s Tcl command name. See from_tcl().

winfo_children()
Returns a list of child widgets that this widget has.

Manual page: winfo(3tk)

winfo_exists()
Returns False if the widget has been destroyed. See destroy().

Manual page: winfo(3tk)

winfo_height()
Calls winfo height. Returns an integer.

Manual page: winfo(3tk)

winfo_id()
Calls winfo id. Returns an integer.

Manual page: winfo(3tk)

winfo_reqheight()
Calls winfo reqheight. Returns an integer.

Manual page: winfo(3tk)

winfo_reqwidth()
Calls winfo reqwidth. Returns an integer.

Manual page: winfo(3tk)

winfo_rootx()
Calls winfo rootx. Returns an integer.

Manual page: winfo(3tk)

winfo_rooty()
Calls winfo rooty. Returns an integer.

Manual page: winfo(3tk)

winfo_toplevel()
Returns the Toplevel widget that this widget is in.

Manual page: winfo(3tk)

winfo_width()
Calls winfo width. Returns an integer.

Manual page: winfo(3tk)

46 Chapter 2. Reference

https://docs.python.org/3/library/exceptions.html#TypeError
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm

Teek Documentation

winfo_x()
Calls winfo x. Returns an integer.

Manual page: winfo(3tk)

winfo_y()
Calls winfo y. Returns an integer.

Manual page: winfo(3tk)

class teek.Button(parent, text=”, command=None, **kwargs)
A widget that runs a callback when it’s clicked.

See examples/button.py for example code.

text can be given as with Label. The 'command' option is not settable, and its value is a Callback that
runs with no arguments when the button is clicked. If the command argument is given, it will be treated so that
this. . .

button = teek.Button(some_widget, "Click me", do_something)

. . . does the same thing as this:

button = teek.Button(some_widget, "Click me")
button.config['command'].connect(do_something)

See Callback.connect() documentation if you need to pass arguments to the do_something function.

Manual page: ttk_button(3tk)

invoke()
Runs the command callback.

See pathname invoke in ttk_button(3tk) for details.

class teek.Canvas
See Canvas Widget.

class teek.Checkbutton(parent, text=”, command=None, **kwargs)
A square-shaped, checkable box with text next to it.

See examples/checkbutton.py for example code.

For convenience, text and command arguments work the same way as with Button.

The 'command' option is not settable, and its value is a Callback. By default, it runs with True as the only
argument when the checkbutton is checked, and with False when the checkbutton is unchecked. You can pass
onvalue=False, offvalue=True to reverse this if you find it useful for some reason. This also affects
the values that end up in the 'variable' option (see manual page), which is a BooleanVar.

Manual page: ttk_checkbutton(3tk)

invoke()
Checks or unchecks the checkbutton, updates the variable and runs the command callback.

See pathname invoke in ttk_checkbutton(3tk) for details.

class teek.Combobox(parent, text=”, **kwargs)
An entry that displays a list of valid values.

This class inherits from Entry , so it has all the attributes and methods of Entry , like text and
cursor_pos.

Manual page: ttk_combobox(3tk)

2.2. Widget Reference 47

https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://github.com/Akuli/teek/blob/master/examples/button.py
https://www.tcl.tk/man/tcl/TkCmd/ttk_button.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_button.htm
https://github.com/Akuli/teek/blob/master/examples/checkbutton.py
https://www.tcl.tk/man/tcl/TkCmd/ttk_checkbutton.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_checkbutton.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_combobox.htm

Teek Documentation

class teek.Entry(parent, text=”, **kwargs)
A widget for asking the user to enter a one-line string.

The text option works as with Label.

See also:

Use Label if you want to display text without letting the user edit it. Entries are also not suitable for text with
more than one line; use Text instead if you want multiple lines.

Manual page: ttk_entry(3tk)

cursor_pos
The integer index of the cursor in the entry, so that entry.text[:entry.cursor_pos] and
entry.text[entry.cursor_pos:] are the text before and after the cursor, respectively.

You can set this attribute to move the cursor.

text
The string of text in the entry widget.

Setting and getting this attribute calls get, insert and delete documented in ttk_entry(3tk).

class teek.Frame(parent, **kwargs)
An empty widget. Frames are often used as containers for other widgets.

Manual page: ttk_frame(3tk)

class teek.Label(parent, text=”, **kwargs)
A widget that displays text.

For convenience, the text option can be also given as a positional initialization argument, so teek.
Label(parent, "hello") and teek.Label(parent, text="hello") do the same thing.

Manual page: ttk_label(3tk)

class teek.LabelFrame(parent, text=”, **kwargs)
A frame with a visible border line and title text.

For convenience, the text option can be given as with Label.

Manual page: ttk_labelframe(3tk)

class teek.Menu
See Menu Widget.

class teek.Notebook
See Notebook Widget.

class teek.Progressbar(parent, **kwargs)
Displays progress of a long-running operation. This is useful if you are running something concurrently and
you want to let the user know that something is happening.

The progress bar can be used in two modes. Pass mode='indeterminate' and call start() to make the
progress bar bounce back and forth forever. If you want to create a progress bar that actually displays progress
instead of just letting the user know that something is happening, don’t pass mode='indeterminate'; the
default is mode='determinate', which does what you want.

There’s a 'value' option that can be used to set the progress in determinate mode. A value of 0 means that
nothing is done, and 100 means that we are ready. If you do math on a regular basis, that’s all you need to know,
but if you are not very good at math, keep reading:

Progress Math

48 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/ttk_entry.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_entry.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_frame.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_label.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_labelframe.htm

Teek Documentation

If your program does 5 things, and 2 of them are done, you should do this:

progress_bar.config['value'] = (2 / 5) * 100

It works like this:

• The program has done 2 things out of 5; that is, 2/5. That is a division. Its value turns out to be 0.4.

• We want percents. They are numbers between 0 and 100. The done / total calculation gives us
a number between 0 and 1; if we have done nothing, we have 0 / 5 == 0.0, and if we have done
everything, we have 5 / 5 == 1.0. If we add * 100, we get 0.0 * 100 = 0.0 when we haven’t
done anything, and 1.0 * 100 == 100.0 when we have done everything. Awesome!

progress_bar.config['value'] = (done / total) * 100

However, this fails if total == 0:

>>> 1/0
Traceback (most recent call last):

...
ZeroDivisionError: division by zero

If we have no work to do and we have done nothing (0/0), then how many percents of the work is done? It
doesn’t make sense. You can handle these cases e.g. like this:

if total == 0:
0/0 things done, make the progress bar grayed out because
there is no progress to indicate
progress_bar.state.add('disabled')

else:
progress_bar.config['value'] = (done / total) * 100

If multiplying by 100 is annoying, you can create the progress bar like this. . .

progress_bar = teek.Progressbar(parent_widget, maximum=1)

. . . and then set numbers between 0 and 1 to progress_bar.config['value']:

if total == 0:
progress_bar.state.add('disabled')

else:
progress_bar.config['value'] = done / total

Manual page: ttk_progressbar(3tk)

start(interval=50)
Makes an indeterminate mode progress bar bounce back and forth.

The progress bar will move by a tiny bit every interval milliseconds. A small interval makes the progress
bar look smoother, but don’t make it too small to avoid keeping CPU usage down. The default should be
good enough for most things.

stop()
Stops the bouncing started by start().

class teek.Scrollbar(parent, **kwargs)
A widget for scrolling other widgets, like Text.

In order to use a scrollbar, there are two things you need to do:

2.2. Widget Reference 49

https://www.tcl.tk/man/tcl/TkCmd/ttk_progressbar.htm

Teek Documentation

1. Tell a scrollable widget (e.g. Text) to use the scrollbar.

2. Tell the scrollbar to scroll the widget.

For example:

import teek

window = teek.Window()

text = teek.Text(window)
text.pack(side='left', fill='both', expand=True)
scrollbar = teek.Scrollbar(window)
scrollbar.pack(side='left', fill='y')

text.config['yscrollcommand'].connect(scrollbar.set) # 1.
scrollbar.config['command'].connect(text.yview) # 2.

window.on_delete_window.connect(teek.quit)
teek.run()

The value of the scrollbar’s 'command' option is a Callback that runs when the scrollbar is scrolled. It
runs with arguments suitable for Text.xview() or Text.yview(). See SCROLLING COMMANDS in
ttk_scrollbar(3tk) for details about the arguments.

Manual page: ttk_scrollbar(3tk)

get()
Return a two-tuple of floats that have been passed to set().

See also pathName get in ttk_scrollbar(3tk).

set(first, last)
Set the scrollbar’s position.

See pathName set in ttk_scrollbar(3tk) for details.

class teek.Separator(parent, **kwargs)
A horizontal or vertical line, depending on an orient option.

Create a horizontal separator like this. . .

separator = teek.Separator(some_widget, orient='horizontal')
separator.pack(fill='x') # default is side='top'

. . . and create a vertical separator like this:

separator = teek.Separator(some_widget, orient='vertical')
separator.pack(fill='y', side='left') # can also use side='right'

See examples/separator.py for more example code.

Manual page: ttk_separator(3tk)

class teek.Spinbox(parent, *, command=None, **kwargs)
An entry with up and down buttons.

This class inherits from Entry , so it has all the attributes and methods of Entry , like text and
cursor_pos.

The value of the 'command' option is a Callback that is ran with no arguments. If a command keyword
argument is given, it will be connected to the callback automatically.

50 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/ttk_scrollbar.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_scrollbar.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_scrollbar.htm
https://www.tcl.tk/man/tcl/TkCmd/ttk_scrollbar.htm
https://github.com/Akuli/teek/blob/master/examples/separator.py
https://www.tcl.tk/man/tcl/TkCmd/ttk_separator.htm

Teek Documentation

Manual page: ttk_spinbox(3tk)

class teek.Text
See Text Widget.

class teek.Toplevel(title=None, **options)
This represents a non-Ttk toplevel widget.

Usually it’s easiest to use Window instead. It behaves like a Toplevel widget, but it’s actually a Toplevel
with a Frame inside it.

Manual page: toplevel(3tk)

geometry(width=None, height=None, x=None, y=None)
Set or get the size and place of the window in pixels.

Tk’s geometries are strings like '100x200+300+400', but that’s not very pythonic, so this method
works with integers and namedtuples instead. This method can be called in a few different ways:

• If width and height are given, the window is resized.

• If x and y are given, the window is moved.

• If all arguments are given, the window is resized and moved.

• If no arguments are given, the current geometry is returned as a namedtuple with width, height, x and
y fields.

• Calling this method otherwise raises an error.

Examples:

>>> import teek
>>> window = teek.Window()
>>> window.geometry(300, 200) # resize to 300px wide, 200px high
>>> window.geometry(x=0, y=0) # move to upper left corner
>>> window.geometry()
Geometry(width=300, height=200, x=0, y=0)
>>> window.geometry().width
300

See also wm geometry in wm(3tk).

iconphoto(*images, default=False)
Calls wm iconphoto documented in wm(3tk).

Positional arguments should be Image objects. If default=True is given, the -default switch is
used; otherwise it isn’t.

title
wm_state
transient
minsize
maxsize

withdraw()
iconify()
deiconify()

These attributes and methods correspond to similarly named things in wm(3tk). Note that wm_state is
state in the manual page; the teek attribute is wm_state to make it explicit that it is the wm state, not
some other state.

2.2. Widget Reference 51

https://www.tcl.tk/man/tcl/TkCmd/ttk_spinbox.htm
https://www.tcl.tk/man/tcl/TkCmd/toplevel.htm
https://www.tcl.tk/man/tcl/TkCmd/wm.htm
https://www.tcl.tk/man/tcl/TkCmd/wm.htm
https://www.tcl.tk/man/tcl/TkCmd/wm.htm

Teek Documentation

All of the attributes are settable, so you can do e.g. my_toplevel.title = "lol". Here are the
types of the attributes:

• title and wm_state are strings.

• transient is a widget.

• minsize and maxsize are tuples of two integers.

Note: If transient is set to a Window , looking it up won’t give back that same window; instead, it
gives the toplevel of the window.

wait_window()
Waits until the window is destroyed with destroy().

This method blocks until the window is destroyed, but it can still be called from the event loop; behind the
covers, it runs another event loop that makes the GUI not freeze.

See tkwait window in tkwait(3tk) for more details.

on_delete_window
on_take_focus

Callback objects that run with no arguments when a WM_DELETE_WINDOW or WM_TAKE_FOCUS
event occurs. See wm(3tk). These are connected to nothing by default.

class teek.Window(*args, **kwargs)
A convenient widget that represents a Ttk frame inside a toplevel.

Tk’s windows like Toplevel are not Ttk widgets, and there are no Ttk window widgets. If you add Ttk
widgets to Tk windows like Toplevel so that the widgets don’t fill the entire window, your GUI looks messy
on some systems, like my linux system with MATE desktop. This is why you should always create a big Ttk
frame that fills the window, and then add all widgets into that frame. That’s kind of painful and most people
don’t bother with it, but this class does that for you, so you can just create a Window and add widgets to that.

All initialization arguments are passed to Toplevel.

The config attribute combines options from the Frame and the Toplevel so that it uses Frame options
whenever they are available, and Toplevel options otherwise. For example, Frame has an option named
'width', so some_window.config['width'] uses that, but frames don’t have a 'menu' option, so
some_window.config['menu'] uses the toplevel’s menu option.

There is no manual page for this class because this is purely a teek feature; there is no window widget in Tk.

See also:

Toplevel, Frame

toplevel
The Toplevel widget that the frame is in. The Window object itself has all the attributes and meth-
ods of the Frame inside the window, and for convenience, also many Toplevel things like title,
withdraw() and on_delete_window .

destroy()
Destroys the toplevel and the frame in it.

This overrides Widget.destroy().

52 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/tkwait.htm
https://www.tcl.tk/man/tcl/TkCmd/wm.htm

Teek Documentation

2.3 Binding

Button widgets have a 'command' option, and that is set to a callback that runs when the button is clicked. But
what if you have some other widget instead of a button, and you want to do something when it’s clicked? This can be
useful; for example, my editor displays its logo in the about dialog, and if the logo is clicked, it shows the logo in full
size.

Bindings are not limited to just clicking. You can bind to some other things as well, such as mouse movement and key
presses.

2.3.1 Simple Example

This program displays a label that prints hello when it’s clicked.

import teek

def on_click():
print("hello")

window = teek.Window()
label = teek.Label(window, "Click me")
label.pack()
label.bind('<Button-1>', on_click)

window.on_delete_window.connect(teek.quit)
teek.run()

If you change '<Button-1>' to '<Motion>', 'hello' is printed every time you move the mouse over the
label. See bind(3tk) for all possible strings you can pass to bind().

Tip: If you want to bind to all widgets in window, you can use window.toplevel.bind(). See Window
documentation for more information about window.toplevel.

2.3.2 Returning ‘break’

Teek lets you prevent the default action of a binding from happening. For example, clicking a Text widget focuses
the widget and moves the mouse to the location that was clicked. In this example, on_click() prevents this from
happening by returning 'break':

import teek

window = teek.Window("Hello")

text = teek.Text(window)
text.pack()

def on_click():
print("clicked, returning 'break'")
return 'break'

text.bind('<Button-1>', on_click)

(continues on next page)

2.3. Binding 53

https://www.tcl.tk/man/tcl/TkCmd/bind.htm

Teek Documentation

(continued from previous page)

window.on_delete_window.connect(teek.quit)
teek.run()

Note that return 'break' also prevents other <Button-1> bindings from running. See Callback.
connect() for more details.

2.3.3 Event Objects

In Tcl, code like this. . .

bind $widget <Button-1> {puts "clicked at %X,%Y"}

. . . means that if the widget is clicked 10 pixels right and 20 pixels down from the top left corner of the widget’s parent
window, clicked at 10,20 will be printed. Here puts "clicked at %X,%Y" is a string of code, and %X
and %Y are replaced with the coordinates before it’s ran.

This teek code does the same thing:

def on_click(event):
print("clicked at {},{}".format(event.rootx, event.rooty))

widget.bind('<Button-1>', on_click, event=True)

Here on_click() gets an event object. It has attributes that describe what happened, like rootx and rooty. If
you don’t pass event=True, the callback will be called without the event object.

The %X and %Y stuff is documented in bind(3tk), but event(3tk) seems to contain more useful things. Event object
attributes are named similarly as in event(3tk); for example, there is a -rootx option in event(3tk), and that’s why
teek’s event objects have a rootx attribute.

Here is a long table of attributes that teek supports. It took me a long time to make. The list also demonstrates how
limited tkinter is; only a few things in this table are supported in tkinter.

Name in event(3tk) and teek event attribute Type in teek Tkinter event attribute, if any Tcl substitution bind(3tk)
above int %a
borderwidth int %B
button int num %b
not in event(3tk) char in teek str char %A
count int %c
data see Virtual Events %d
detail in event(3tk) event.data(str) in teek str %d
delta int delta %D
focus bool focus %f
height int height %h
not in event(3tk) i_window in teek int %i
keycode int keycode %k
keysym str keysym %K
not in event(3tk) keysym_num in teek int keysym_num %N
mode str %m
override bool %o
place str %p
not in event(3tk) property_name in teek str %P

Continued on next page

54 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/bind.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/bind.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm

Teek Documentation

Table 1 – continued from previous page
Name in event(3tk) and teek event attribute Type in teek Tkinter event attribute, if any Tcl substitution bind(3tk)
root int %R
rootx int x_root %X
rooty int y_root %Y
sendevent bool send_event %E
serial int serial %#
state str state %s
subwindow int %S
time int time %t
not in event(3tk) type in teek int type %T
not in event(3tk) widget in teek Widget widget %W
width int width %w
x int x %x
y int y %y

Note that %d is used for both detail and data in Tcl, depending on the type of the event. Teek uses that internally,
but it doesn’t keep track of the event types for you, so you need to do event.data(str) if you want the detail
string.

Note: If the value is not available, it’s usually None, but the attributes whose teek type is str are '??' instead. The
reason is that the Tcl substitution gets a ?? value for some reason in these cases, but '??' could be also a valid value
of e.g. data, so teek doesn’t try to hide it.

The “Tcl bind substitution” and “tkinter event attribute” columns are for porting Tcl code and tkinter code to teek. If
you are writing a new program in teek, don’t worry about them.

2.3.4 The bindings attribute

Teek uses Callback objects for most things that it runs for you. It also does that with bindings.

teek.Widget.bindings
A dictionary-like object of the widget’s bindings with string keys and Callback values.

Some binding sequences are equivalent in Tk. For example, <ButtonPress-1>, <Button-1> and <1> all
mean the same thing, and looking up those strings from a widget’s bindings is guaranteed to give the same
Callback object.

teek.Widget.bind(sequence, func, *, event=False)
For convenience, widget.bind(sequence, func, event=True) does widget.
bindings[sequence].connect(func). Note that this does not discard old bindings, so calling
this repeatedly will result in multiple functions being bound at the same time (unlike in tkinter, see Binding in
the tkinter porting tutorial).

If event=True is not given, widget.bindings[sequence] is connected to a new function that calls
func with no arguments, ignoring the event object.

2.3.5 Class Bindings

Sometimes it’s useful to bind things so that all instances of a teek class get bound.

teek.Widget.class_bindings

2.3. Binding 55

https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/bind.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm
https://www.tcl.tk/man/tcl/TkCmd/event.htm

Teek Documentation

teek.Widget.bind_class(sequence, func, *, event=False)
These are like bindings and bind(), but for binding all instances of a class. Call teek.Widget.
bind_class() to bind all widgets in the whole program, or e.g. teek.Text.bind_class() to bind
all text widgets. This works both for widgets that have been already created and for widgets that will be created
after the bind_class() call.

Note: This does not work well for classes that inherit from teek’s widget classes. For example, if you have a
class like this. . .

class MyText(teek.Text):
pass

. . . then MyText.bind_class and MyText.class_bindings are no different from teek.Text.
bind_class and teek.Text.class_bindings. This is because class_bindings and
bind_class() use the tk_class_name attribute.

2.3.6 Virtual Events

Names of virtual events have << and >> instead of < and >. Here is an example:

>>> window = teek.Window()
>>> label = teek.Label(window)
>>> label.bind('<<Asd>>', print, event=True) # will run print(the_event)
>>> label.event_generate('<<Asd>>') # doctest: +ELLIPSIS
<Event: data='', serial=..., type=35>

You can also pass data to the virtual event:

>>> label.event_generate('<<Asd>>', data='toot') # doctest: +ELLIPSIS
<Event: data='toot', serial=..., type=35>

If you want to actually use the data, don’t do just event.data; that doesn’t work right. Instead, use event.
data(type_spec) where type_spec is a type specifacion. For example, event.data([str]) retrieves the
data as a list of strings.

>>> def callback(event):
... print("got data string list:", event.data([str]))
...
>>> label.bind('<<ThingyThing>>', callback, event=True)
>>> label.event_generate('<<ThingyThing>>', data=['a', 'b', 'c']) # doctest:
→˓+ELLIPSIS
got data string list: ['a', 'b', 'c']

Widget.event_generate(event, **kwargs)
Calls event generate documented in event(3tk).

As usual, options are given without dashes as keyword arguments, so Tcl code like
event generate $widget <SomeEvent> -data $theData looks like widget.
event_generate('<SomeEvent>', data=the_data) in teek.

56 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/event.htm

Teek Documentation

2.4 Dialogs

This page contains things for asking the user things like file names and colors. If you want to display a custom dialog,
create a Window , add some stuff to it and use wait_window().

Note: All functions documented on this page take a parent keyword argument. Use that whenever you are calling
the functions from a program that has another window. This way the dialog will look like it belongs to that parent
window.

2.4.1 Message Boxes

These functions call tk_messageBox(3tk). Options are passed to tk_messageBox(3tk) so that this code. . .

teek.dialog.ok_cancel("Question", "Do you want that?")

. . . does a Tcl call like this:

tk_messageBox -type okcancel -title "Question" -message "Do you want that?" -icon
→˓question

teek.dialog.info(title, message, detail=None, **kwargs)
teek.dialog.warning(title, message, detail=None, **kwargs)
teek.dialog.error(title, message, detail=None, **kwargs)

Each of these functions shows a message box that has an “ok” button. The icon option is 'info', 'warning'
or 'error' respectively. These functions always return None.

teek.dialog.ok_cancel(title, message, detail=None, **kwargs)
Shows a message box with “ok” and “cancel” buttons. The icon is 'question' by default, but you can change
it by passing a keyword argument, e.g. icon='warning'. Returns True if “ok” is clicked, and False if
“cancel” is clicked.

teek.dialog.retry_cancel(title, message, detail=None, **kwargs)
Like ok_cancel(), but with a “retry” button instead of an “ok” button and 'warning' as the default icon.

teek.dialog.yes_no(title, message, detail=None, **kwargs)
Shows a message box with “yes” and “no” buttons. The icon is 'question' by default. Returns True for
“yes” and False for “no”.

teek.dialog.yes_no_cancel(title, message, detail=None, **kwargs)
Shows a message box with “yes”, “no” and “cancel” buttons. The icon is 'question' by default. Returns
one of the strings 'yes', 'no' or 'cancel'.

teek.dialog.abort_retry_ignore(title, message, detail=None, **kwargs)
Like yes_no_cancel(), but with different buttons and return value strings. The icon is 'error' by default.

2.4.2 File and Directory Dialogs

Keyword arguments work as usual. Note that paths are returned as strings of absolute paths, not e.g. pathlib.Path
objects.

teek.dialog.open_file(**kwargs)
Ask the user to choose an existing file. Returns the path.

This calls tk_getOpenFile(3tk) without -multiple. None is returned if the user cancels.

2.4. Dialogs 57

https://www.tcl.tk/man/tcl/TkCmd/messageBox.htm
https://www.tcl.tk/man/tcl/TkCmd/messageBox.htm
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://www.tcl.tk/man/tcl/TkCmd/getOpenFile.htm

Teek Documentation

teek.dialog.open_multiple_files(**kwargs)
Ask the user to choose one or more existing files. Returns a list of paths.

This calls tk_getOpenFile(3tk) with -multiple set to true. An empty list is returned if the user cancels.

teek.dialog.save_file(**kwargs)
Ask the user to choose a path for a new file. Return the path.

This calls tk_getSaveFile(3tk), and returns None if the user cancels.

teek.dialog.directory(**kwargs)
Asks the user to choose a directory, and return a path to it.

This calls tk_chooseDirectory(3tk), and returns None if the user cancels.

Note: By default, the user can choose a directory that doesn’t exist yet. This behaviour is documented in
tk_chooseDirectory(3tk). If you want the user to choose an existing directory, use mustexist=True.

2.4.3 Other Dialogs

teek.dialog.color(**kwargs)
Calls tk_chooseColor(3tk).

The color selected by the user is returned, or None if the user cancelled the dialog.

2.5 Miscellaneous Classes

This page contains documentation of classes that represent different kinds of things.

2.5.1 Colors

class teek.Color(*args)
Represents an RGB color.

There are a few ways to create color objects:

• Color(red, green, blue) creates a new color from an RGB value. The red, green and blue
should be integers between 0 and 255 (inclusive).

• Color(hex_string) creates a color from a hexadecimal color string. For example,
Color('#ff0000') is equivalent to Color(0xff, 0x00, 0x00) where 0xff is hexadecimal
notation for 255, and 0x00 is 0.

• Color(color_name) creates a color object from a Tk color. There is a long list of color names in
colors(3tk).

Examples:

>>> Color(255, 255, 255) # r, g and b are all maximum, this is white
<Color '#ffffff': red=255, green=255, blue=255>
>>> Color('white') # 'white' is a Tk color name
<Color 'white': red=255, green=255, blue=255>

58 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/getOpenFile.htm
https://www.tcl.tk/man/tcl/TkCmd/getOpenFile.htm
https://www.tcl.tk/man/tcl/TkCmd/chooseDirectory.htm
https://www.tcl.tk/man/tcl/TkCmd/chooseDirectory.htm
https://www.tcl.tk/man/tcl/TkCmd/chooseColor.htm
https://www.tcl.tk/man/tcl/TkCmd/colors.htm

Teek Documentation

The string argument things are implemented by letting Tk interpret the color, so all of the ways to define colors
as strings shown in Tk_GetColor(3tk) are supported.

Color objects are hashable, and they can be compared with ==:

>>> Color(0, 0, 255) == Color(0, 0, 255)
True
>>> Color(0, 255, 0) == Color(0, 0, 255)
False

Color objects are immutable. If you want to change a color, create a new Color object.

red
green
blue

These are the values passed to Color().

>>> Color(0, 0, 255).red
0
>>> Color(0, 0, 255).green
0
>>> Color(0, 0, 255).blue
255

Assigning to these like some_color.red = 255 raises an exception.

classmethod from_tcl(color_string)
Color.from_tcl(color_string) returns Color(color_string).

This is just for compatibility with type specifications.

to_tcl()
Return this color as a Tk-compatible string.

The string is often a hexadecimal '#rrggbb' string, but not always; it can be also e.g. a color name like
'white'. Use red, green and blue if you want a consistent representation.

>>> Color(255, 0, 0).to_tcl()
'#ff0000'
>>> Color('red').to_tcl()
'red'
>>> Color('red') == Color(255, 0, 0)
True

2.5.2 Callbacks

class teek.Callback
An object that calls functions.

Example:

>>> c = Callback()
>>> c.connect(print, args=["hello", "world"])
>>> c.run() # runs print("hello", "world"), usually teek does this
hello world
>>> c.connect(print, args=["hello", "again"])
>>> c.run()
hello world
hello again

2.5. Miscellaneous Classes 59

https://www.tcl.tk/man/tcl/TkLib/GetColor.htm

Teek Documentation

connect(function, args=(), kwargs=None)
Schedule callback(*args, **kwargs) to run.

If some arguments are passed to run(), they will appear before the args given here. For example:

>>> c = Callback()
>>> c.connect(print, args=['hello'], kwargs={'sep': '-'})
>>> c.run(1, 2) # print(1, 2, 'hello', sep='-')
1-2-hello

The callback may return None or 'break'. In the above example, print returned None. If the callback
returns 'break', two things are done differently:

1. No more connected callbacks will be ran.

2. run() returns 'break', so that the code that called run() knows that one of the callbacks returned
'break'. This is used in bindings.

disconnect(function)
Undo a connect() call.

Note that this method doesn’t do anything to the args and kwargs passed to connect(), so when discon-
necting a function connected multiple times with different arguments, only the first connection is undone.

>>> c = Callback()
>>> c.connect(print, ["hello"])
>>> c.connect(print, ["hello", "again"])
>>> c.run()
hello
hello again
>>> c.disconnect(print)
>>> c.run()
hello

run(*args)
Run the connected callbacks.

If a callback returns 'break', this returns 'break' too without running more callbacks. If all callbacks
run without returning 'break', this returns None. If a callback raises an exception, a traceback is printed
and None is returned.

2.5.3 Fonts

There are different kinds of fonts in Tk:

• Named fonts are mutable; if you set the font of a widget to a named font and you then change that named font
(e.g. make it bigger), the widget’s font will change as well.

• Anonymous fonts don’t work like that, but they are handy if you don’t want to create a font object just to set
the font of a widget.

For example, if you have Label. . .

>>> window = teek.Window()
>>> label = teek.Label(window, "Hello World")
>>> label.pack()

. . . and you want to make its text bigger, you can do this:

60 Chapter 2. Reference

Teek Documentation

>>> label.config['font'] = ('Helvetica', 20)

This form is the teek equivalent of the alternative [3] in the FONT DESCRIPTIONS part of font(3tk). All of the
other font descriptions work as well.

If you then get the font of the label, you get a teek.Font object:

>>> label.config['font']
Font('Helvetica 20')

With a named font, the code looks like this:

>>> named_font = teek.NamedFont(family='Helvetica', size=20)
>>> label.config['font'] = named_font
>>> named_font.size = 50 # even bigger! label will use this new size automatically

Of course, Font and NamedFont objects can also be set to label.config['font'].

class teek.Font(font_description)
Represents an anonymous font.

Creating a Font object with a valid font name as an argument returns a NamedFont object. For example:

>>> teek.Font('Helvetica 12') # not a font name
Font('Helvetica 12')
>>> teek.Font('TkFixedFont') # special font name for default monospace font
NamedFont('TkFixedFont')
>>> teek.NamedFont('TkFixedFont') # does the same thing
NamedFont('TkFixedFont')

family
size
weight
slant
underline
overstrike

See font(3tk) for a description of each attribute. size is an integer, underline and overstrike are
bools, and other attributes are strings. You can set values to these attributes only with NamedFont.

The values of these attributes are looked up with font actual in font(3tk), so they might differ from
the values passed to Font(). For example, the 'Helvetica' family can meany any Helvetica-like
font, so this line of code gives different values platform-specifically:

>>> teek.Font('Helvetica 12').family # doctest: +SKIP
'Nimbus Sans L'

classmethod families(*, allow_at_prefix=False)
Returns a list of font families as strings.

On Windows, some font families start with '@'. I don’t know what those families are and how they might
be useful, but most of the time tkinter users (including me) ignore those, so this method ignores them by
default. Pass allow_at_prefix=True to get a list that includes the '@' fonts.

classmethod from_tcl(font_description)
Font.from_tcl(font_description) returns Font(font_description).

This is just for compatibility with type specifications.

2.5. Miscellaneous Classes 61

https://www.tcl.tk/man/tcl/TkCmd/font.htm
https://www.tcl.tk/man/tcl/TkCmd/font.htm
https://www.tcl.tk/man/tcl/TkCmd/font.htm

Teek Documentation

measure(text)
Calls font measure documented in font(3tk), and returns an integer.

metrics()
Calls font metrics documented in font(3tk), and returns a dictionary that has at least the following
keys:

• The values of 'ascent', 'descent' and 'linespace' are integers.

• The value of 'fixed' is True or False.

to_named_font()
Returns a NamedFont object created from this font.

If this font is already a NamedFont, a copy of it is created and returned.

to_tcl()
Returns the font description passed to Font(font_description).

class teek.NamedFont(name=None, **kwargs)
A font that has a name in Tcl.

NamedFont is a subclass of Font; that is, all NamedFonts are Fonts, but not all Fonts are NamedFonts:

>>> isinstance(teek.NamedFont('toot'), teek.Font)
True
>>> isinstance(teek.Font('Helvetica 12'), teek.NamedFont)
False

If name is not given, Tk will choose a font name that is not in use yet. If name is given, it can be a name of an
existing font, but if a font with the given name doesn’t exist, it’ll be created instead.

The kwargs are values for family, size, weight, slant, underline and overstrike attributes.
For example, this. . .

shouting_font = teek.NamedFont(size=30, weight='bold')

. . . does the same thing as this:

shouting_font = teek.NamedFont()
shouting_font.size = 30
shouting_font.weight = 'bold'

delete()
Calls font delete.

The font object is useless after this, and most things will raise TclError.

classmethod get_all_named_fonts()
Returns a list of all NamedFont objects.

2.5.4 Tcl Variable Objects

class teek.TclVariable(*, name=None)
Represents a global Tcl variable.

In Tcl, it’s possible to e.g. run code when the value of a variable changes, or wait until the variable is set.
Python’s variables can’t do things like that, so Tcl variables are represented as TclVariable objects in
Python. If you want to set the value of the variable object, variable_object = new_value doesn’t work

62 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/font.htm
https://www.tcl.tk/man/tcl/TkCmd/font.htm

Teek Documentation

because that only sets a Python variable, and you need variable_object.set(new_value) instead.
Similarly, variable_object.get() returns the value of the Tcl variable.

The TclVariable class is useless by itself. Usable variable classes are subclasses of it that override
type_spec.

Use SomeUsableTclVarSubclass(name='asd') to create a variable object that represents a Tcl vari-
able named asd, or SomeUsableTclVarSubclass() to let teek choose a variable name for you.

type_spec
This class attribute should be set to a type specification of what get() returns.

classmethod from_tcl(varname)
Creates a variable object from a name string.

See Type Specifications for details.

get()
Returns the value of the variable.

set(new_value)
Sets the value of the variable.

The value does not need to be of the variable’s type; it can be anything that can be converted to tcl.

to_tcl()
Returns the variable name as a string.

wait()
Waits for this variable to be modified.

The GUI remains responsive during the waiting. See tkwait variable in tkwait(3tk) for details.

write_trace
A Callback that runs when the value of the variable changes.

The connected functions will be called with one argument, the variable object. This is implemented with
trace add variable, documented in trace(3tcl).

class teek.StringVar
class teek.IntVar
class teek.FloatVar
class teek.BooleanVar

Handy TclVariable subclasses for variables with str, int, float and bool values, respectively.

2.5.5 Images

class teek.Image(**kwargs)
Represents a Tk photo image.

If you want to display an image to the user, use Label with its image option. See examples/image.py.

Image objects are wrappers for things documented in image(3tk) and photo(3tk). They are mutable, so you
can e.g. set a label’s image to an image object and then later change that image object; the label will update
automatically.

Note: PNG support was added in Tk 8.6. Use GIF images if you want backwards compatibility with Tk 8.5.

If you want to create a program that can read as many different kinds of images as possible, use teek.
extras.image_loader.

2.5. Miscellaneous Classes 63

https://www.tcl.tk/man/tcl/TkCmd/tkwait.htm
https://www.tcl.tk/man/tcl/TclCmd/trace.htm
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://github.com/Akuli/teek/blob/master/examples/image.py
https://www.tcl.tk/man/tcl/TkCmd/image.htm
https://www.tcl.tk/man/tcl/TkCmd/photo.htm

Teek Documentation

Creating a new Image object with Image(...) calls image create photo followed by the options in
Tcl. See image(3tk) for details.

Keyword arguments are passed as options to photo(3tk) as usual, except that if a data keyword argument is
given, it should be a bytes object of data that came from e.g. an image file opened with 'rb'; it will be
automatically converted to base64.

Image objects can be compared with ==, and they compare equal if they represent the same Tk image; that
is, image1 == image2 returns image1.to_tcl() == image2.to_tcl(). Image objects are also
hashable.

config
Similar to the widget config attribute.

blank()
See imageName blank in photo(3tk).

copy(**kwargs)
Create a new image with the same content as this image so that changing the new image doesn’t change
this image.

This creates a new image and then calls copy_from(), so that this. . .

image2 = image1.copy()

. . . does the same thing as this:

image2 = teek.Image()
image2.copy_from(image1)

Keyword arguments passed to image1.copy() are passed to image2.copy_from(). This means
that it is possible to do some things with both copy() and copy_from(), but copy() is consistent
with e.g. list.copy() and dict.copy().

copy_from(source_image, **kwargs)
See imageName copy sourceImage documented in photo(3tk).

Options are passed as usual, except that from=something is invalid syntax in Python, so this method
supports from_=something instead. If you do image1.copy_from(image2), the imageName
in photo(3tk) means image1, and sourceImage means image2.

delete()
Calls image delete documented in image(3tk).

The image object is useless after this, and most things will raise TclError.

classmethod from_tcl(name)
Create a new image object from the name of a Tk image.

See Type Specifications for details.

get(x, y)
Returns the Color of the pixel at (x,y).

classmethod get_all_images()
Return all existing images as a list of Image objects.

get_bytes(format_, **kwargs)
Like write(), but returns the data as a bytes object instead of writing it to a file.

The format_ argument can be any string that is compatible with the -format option of imageName
write documented in photo(3tk). All keyword arguments are same as for write().

64 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/image.htm
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://docs.python.org/3/library/stdtypes.html#bytes
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://docs.python.org/3/library/stdtypes.html#dict.copy
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://www.tcl.tk/man/tcl/TkCmd/image.htm
https://docs.python.org/3/library/stdtypes.html#bytes
https://www.tcl.tk/man/tcl/TkCmd/photo.htm

Teek Documentation

height
See width.

in_use()
True if any widget uses this image, or False if not.

This calls image inuse documented in image(3tk).

read(filename, **kwargs)
See imageName read filename in photo(3tk).

redither()
See imageName redither in photo(3tk).

to_tcl()
Returns the Tk name of the image as a string.

transparency_get(x, y)
Check if the pixel at (x,y) is transparent, and return a bool.

The x and y are pixels, as integers. See imageName transparency get in photo(3tk).

transparency_set(x, y, is_transparent)
Make the pixel at (x,y) transparent or not transparent.

See imageName transparency set in photo(3tk) and transparency_get().

width
The current width of the image as pixels.

Note that image.width is different from image.config['width']; image.width changes
if the image’s size changes, but image.config['width'] often represents the width that the im-
age had when it was first created. tl;dr: Usually it’s best to use image.width instead of image.
config['width'].

write(filename, **kwargs)
See imageName write in photo(3tk).

See also:

Use get_bytes() if you don’t want to create a file.

2.5.6 Screen Distance Objects

class teek.ScreenDistance(value)
Represents a Tk screen distance.

If you don’t know or care what screen distances are, use the pixels attribute. The value can be an integer
or float of pixels or a string that Tk_GetPixels(3tk) accepts; for example, 123 or '2i'.

ScreenDistance objects are hashable, and they can be compared with each other:

>>> funny_dict = {ScreenDistance(1): 'lol'}
>>> funny_dict[ScreenDistance(1)]
'lol'
>>> ScreenDistance('1c') == ScreenDistance('1i')
False
>>> ScreenDistance('1c') < ScreenDistance('1i')
True

2.5. Miscellaneous Classes 65

https://www.tcl.tk/man/tcl/TkCmd/image.htm
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://www.tcl.tk/man/tcl/TkCmd/photo.htm
https://www.tcl.tk/man/tcl/TkLib/GetPixels.htm

Teek Documentation

pixels
The number of pixels that this screen distance represents as an int.

This is implemented with winfo pixels, documented in winfo(3tk).

fpixels
The number of pixels that this screen distance represents as a float.

This is implemented with winfo fpixels, documented in winfo(3tk).

classmethod from_tcl(value_string)
Creates a screen distance object from a Tk screen distance string.

See Type Specifications for details.

to_tcl()
Return the value as a string.

2.6 Platform Information

This page documents things that can tell you which platform your program is running on.

teek.TCL_VERSION
teek.TK_VERSION

These can be used for checking the versions of the Tcl interpreter and its Tk library that teek is using. These are
two-tuples of integers, and you can compare integer tuples nicely, so you can do e.g. this:

if teek.TK_VERSION >= (8, 6):
use a feature new in Tk 8.6

else:
show an error message or do things without the new feature

Teek refuses to run if Tcl or Tk is older than 8.5, so you can use all features new in Tcl/Tk 8.5 freely.

Note: The manual page links in this tutorial like label(3tk) always point to the latest manual pages, which are
for Tcl/Tk 8.6 at the time of writing this.

teek.windowingsystem()
This function returns 'win32', 'aqua' or 'x11'. Use it instead of platform.system() when you
have platform-specific teek code. For example, it’s possible to run X11 on a Mac, in which case platform.
system() returns 'Darwin' and this function returns 'x11'. If you have code that should even then behave
like it would normally behave on a Mac, use platform.system().

The Tk documentation for this function is tk windowingsystem in tk(3tk).

2.7 Extras

Big tkinter projects often have their own implementations of some commonly needed things that tkinter doesn’t come
with. The teek.extras module contains a collection of them.

To use the extras, import teek is not enough; that doesn’t import any extras. This is good because most teek
programs don’t need the extras, and for them, import teek may run a little bit faster if it doesn’t import the extras.
Instead, you typically need to do something like this to use the extras:

66 Chapter 2. Reference

https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/winfo.htm
https://www.tcl.tk/man/tcl/TkCmd/label.htm
https://docs.python.org/3/library/platform.html#platform.system
https://docs.python.org/3/library/platform.html#platform.system
https://docs.python.org/3/library/platform.html#platform.system
https://docs.python.org/3/library/platform.html#platform.system
https://www.tcl.tk/man/tcl/TkCmd/tk.htm

Teek Documentation

import teek
from teek.extras import tooltips

now some code that uses tooltips.set_tooltip

2.7.1 tooltips

This module contains a simple tooltip implementation with teek. There is example code in examples/tooltip.py.

If you have read some of IDLE’s source code (if you haven’t, that’s good; IDLE’s source code is ugly), you might be
wondering what this thing has to do with idlelib/tooltip.py. Don’t worry, I didn’t copy/paste any code from
idlelib and I didn’t read idlelib while I wrote the tooltip code! Idlelib is awful and I don’t want to use anything from it
in my projects.

teek.extras.tooltips.set_tooltip(widget, text)
Create tooltips for a widget.

After calling set_tooltip(some_widget, "hello"), “hello” will be displayed in a small win-
dow when the user moves the mouse over the widget and waits for a small period of time. Do
set_tooltip(some_widget, None) to get rid of a tooltip.

2.7.2 cross_platform

Most teek things work the same on most platforms, but not everything does. For example, binding <Tab> works
everywhere, but binding <Shift-Tab> doesn’t work on Linux and you need a different binding instead. This extra
module contains utilities for dealing with things like that.

teek.extras.cross_platform.bind_tab_key(widget, callback, **bind_kwargs)
A cross-platform way to bind Tab and Shift+Tab.

Use this function like this:

from teek.extras import cross_platform

def on_tab(shifted):
if shifted:

print("Shift+Tab was pressed")
else:

print("Tab was pressed")

cross_platform.bind_tab_key(some_widget, on_tab)

Binding '<Tab>' works on all systems I’ve tried it on, but if you also want to bind tab presses where the shift
key is held down, use this function instead.

This function can also take any of the keyword arguments that teek.Widget.bind() takes. If you pass
event=True, the callback will be called like callback(shifted, event); that is, the shifted bool
is the first argument, and the event object is the second.

2.7.3 more_dialogs

This is useful when teek.dialog is not enough.

All of the functions take these arguments:

• title will be the title of the dialog.

2.7. Extras 67

https://github.com/Akuli/teek/blob/master/examples/tooltip.py

Teek Documentation

• text will be displayed in a label above the text entry or spinbox.

• initial_value will be added to the entry or spinbox before the user changes it.

• parent is a window widget that the dialog will be displayed on top of.

teek.extras.more_dialogs.ask_string(title, text, *, validator=<class ’str’>, initial_value=”,
parent=None)

Displays a dialog that contains a teek.Entry widget.

The validator should be a function that takes a string as an argument, and returns something useful (see
below). By default, it returns the string unchanged, which is useful for asking a string from the user. If the
validator raises ValueError, the OK button of the dialog is disabled to tell the user that the value they entered
is invalid. Then the user needs to enter a valid value or cancel the dialog.

This returns whatever validator returned, or None if the dialog was canceled.

teek.extras.more_dialogs.ask_integer(title, text, allowed_values, *, initial_value=None, par-
ent=None)

Displays a dialog that contains a teek.Spinbox widget.

allowed_values can be a sequence of acceptable integers or a range. If initial_value is given, it
must be in allowed_values. If it’s not, allowed_values[0] is used.

This returns an integer in allowed_values, or None if the user cancels.

2.7.4 links

With this extra, you can insert web browser style links to Text widgets. This is based on this tutorial that is almost as
old as I am, but it’s still usable.

See examples/links.py for example code.

teek.extras.links.add_url_link(textwidget, url, start, end)
Make some of the text in the textwidget to be clickable so that clicking it will open url.

The text between the text indexes start and end becomes clickable, and rest of the text is not touched.

Do this if you want to insert some text and make it a link immediately:

from teek.extras import links

...

old_end = textwidget.end # adding text to end changes textwidget.end
textwidget.insert(textwidget.end, 'Click me')
links.add_url_link(textwidget, 'https://example.com/', old_end, textwidget.end)

This function uses webbrowser.open() for opening url.

teek.extras.links.add_function_link(textwidget, function, start, end)
Like add_url_link(), but calls a function instead of opening a URL in a web browser.

2.7.5 image_loader

Note: This extra has dependencies that don’t come with teek when you install it with pip install teek or
similar, because I want teek to be light-weight and I don’t want to bring in lots of dependencies with it. Run pip
install teek[image_loader] to install the things you need for using this extra.

68 Chapter 2. Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#range
http://effbot.org/zone/tkinter-text-hyperlink.htm
https://github.com/Akuli/teek/blob/master/examples/links.py
https://docs.python.org/3/library/webbrowser.html#webbrowser.open

Teek Documentation

There’s also image_loader_dummy, which is like image_loader except that it just creates teek.Image()
objects, and doesn’t support anything that plain teek.Image() doesn’t support. It’s meant to be used like this:

try:
from teek.extras import image_loader

except ImportError:
from teek.extras import image_loader_dummy as image_loader

This extra lets you create teek.Image objects of images that Tk itself doesn’t support. It uses other Python libraries
like PIL and svglib to do that, and you can just tell it to load an image and let it use whatever libraries are needed.

2.7.6 soup

This extra contains code that views HTML to text widgets. The HTML is taken as BeautifulSoup elements, so you
need to have it installed to use this module. Don’t get too excited though – this is not something that’s intended to be
used for creating a web browser or something, because this thing doesn’t even support JavaScript or CSS! It’s meant
to be used e.g. when you want to display some markup to the user, and you know a library that can convert it to simple
HTML.

If the HTML contains images that are not GIF images, make sure to install image_loader. The soup extra will
use it if it’s installed.

Only these HTML elements are supported by default (but you can subclass SoupViewer and add support for more
elements, see SoupViewer.add_soup()):

• <h1>, <h2>, <h3>, <h4>, <h5> and <h6>

• <pre> and <code>

•

• , <i>, and

• <p>

• , and

• <a>

•

class teek.extras.soup.SoupViewer(textwidget, threads=True)
Displays BeautifulSoup HTML elements in a text widget.

Note: If the soup contains tags, the images are read or downloaded automatically by default. Subclass
SoupViewer and override download() if you don’t want that.

Images are loaded in threads, so make sure to use teek.init_threads(). Alternatively, you can pass
threads=False, and the images won’t be loaded at all.

widget
The teek.Text widget that everything is added to.

add_soup(element)
Render a BeautifulSoup4 HTML element.

The text, images, or whatever the element represents are added to the end of the text widget.

2.7. Extras 69

https://pillow.readthedocs.io/en/stable/
https://github.com/deeplook/svglib/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Teek Documentation

This method looks for methods whose names are handle_ followed by the name of a HTML tag; for
example, handle_h1() or handle_p(). Those methods run when an element with the corresponding
tag name is added. You can subclass SoupViewer and create more of these methods to handle more
different kinds of tags. There are two things that the methods can do:

1. The method can return None to indicate that add_soup() shouldn’t do anything with the content of
the element.

def handle_pre(self, pre):
self.widget.insert(self.widget.end, pre.text.rstrip() + '\n\n')

2. The method can be decorated with contextlib.contextmanager(). When it yields,
add_soup() will loop over the element and call itself recursively with each subelement.

@contextlib.contextmanager
def handle_ul(self, ul):

for li in ul:
if li.name == 'li':

'\N{bullet} ' creates a Unicode black circle character
li.insert(0, '\N{bullet} ')

yield # the content of the ul is added here
self.widget.insert(self.widget.end, '\n')

In either case, add_soup() adds a textwidget tag as explained in create_tags().

create_tags()
Adds text tags to the widget for displaying the soup elements.

This is not called automatically; you should call this before actually using the SoupViewer.

Each text tag is named with 'soup-' followed by the name of the corresponding HTML tag, such as
'soup-p' or 'soup-pre'. If you are not happy with what this method does, you can change the text
tags after calling it.

download(url)
Downloads the content of the URL, and returns it as bytes.

This method is called whenever the soup contains an or something else that has to be read from a
file or downloaded. If it raises an exception, the alt of the will be displayed instead of the actual
image, if there is an alt. The alt is also displayed while this method is running.

By default, this uses urllib.request.urlopen(). You can override this if urllib is doing some-
thing dumb or you want to control which things can be downloaded.

Usually this is called from some other thread than the main thread.

stop_loading(cleanup=True)
Tell currently running threads to do nothing to the widget.

Things like elements are loaded with threads, so they might add something to the text widget
several seconds after the add_soup() call.

If cleanup is True, this method also e.g. deletes already loaded images, because then it assumes that
they are not needed anymore. This means that if you don’t pass cleanup=False, you should clear the
text widget after calling this method.

This is automatically called with cleanup=True when the widget is destroyed.

70 Chapter 2. Reference

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/library/urllib.request.html#urllib.request.urlopen

CHAPTER 3

Understanding teek

Things documented here are useful if you want to know how stuff works or you want to do some advanced tricks with
teek. I recommend reading these things if you want to help me with developing teek.

3.1 Event Loop

Tk is event-based. When you click a Button, a click event is generated, and Tk processes it. Usually that involves
making the button look like it’s pressed down, and maybe calling a callback function that you have told the button to
run.

The event loop works essentially like this pseudo code:

while True:
handle_an_event()
if there_are_no_more_events_because_we_handled_all_of_them:

wait_for_more_events()

These functions can be used for working with the event loop:

teek.run()
Runs the event loop until quit() is called.

teek.quit()
Stop the event loop and destroy all widgets.

This function calls destroy . in Tcl, and that’s documented in destroy(3tk). Note that this function does not
tell Python to quit; only teek quits, so you can do this:

import teek

window = teek.Window()
teek.Button(window, "Quit", teek.quit).pack()
teek.run()
print("Still alive")

71

https://www.tcl.tk/man/tcl/TkCmd/destroy.htm

Teek Documentation

If you click the button, it interrupts teek.run() and the print runs.

teek.before_quit
quit() runs this callback with no arguments before it does anything else. This means that when this callback
runs, widgets have not been destroyed yet, but they will be destroyed soon.

teek.after_quit
quit() runs this callback when it has done everything else successfully.

teek.update(*, idletasks_only=False)
Handles all pending events, and returns when they are all handled.

See update(3tcl) for details. If idletasks_only=True is given, this calls update idletasks; other-
wise, this calls update with no arguments.

3.2 Tcl Calls

Note: This section assumes that you know Tcl. You may have learned some of it while using teek, but something like
Learn Tcl in Y Minutes might be useful for you.

Teek does most things by calling commands in Tcl. You can also call Tcl commands yourself, which is useful if you
want to do something that can be done in Tcl, but there is no other way to do it in teek.

There are two functions for doing this:

teek.tcl_eval(returntype, code)
Run a string of Tcl code.

>>> teek.tcl_eval(None, 'proc add {a b} { return [expr $a + $b] }')
>>> teek.tcl_eval(int, 'add 1 2')
3
>>> teek.tcl_call(int, 'add', 1, 2) # usually this is better, see below
3

teek.tcl_call(returntype, command, *arguments)
Call a Tcl command.

The arguments are passed correctly, even if they contain spaces:

>>> teek.tcl_eval(None, 'puts "hello world thing"') # 1 arguments to puts
→˓# doctest: +SKIP
hello world thing
>>> message = 'hello world thing'
>>> teek.tcl_eval(None, 'puts %s' % message) # 3 args to puts, tcl error
Traceback (most recent call last):

...
teek.TclError: wrong # args: should be "puts ?-nonewline? ?channelId? string"
>>> teek.tcl_call(None, 'puts', message) # 1 arg to puts # doctest: +SKIP
hello world thing

Both of these functions are ran so that they have access to Tcl’s global variables, and if they create more variables,
they will also be global.

The None means that the return value is ignored, and int means that it’s converted to a Python integer. There are
more details about these conversions below.

Tcl errors always raise the same Python exception:

72 Chapter 3. Understanding teek

https://www.tcl.tk/man/tcl/TclCmd/update.htm
https://learnxinyminutes.com/docs/tcl/

Teek Documentation

exception teek.TclError
This is raised when a Tcl command fails.

3.2.1 Data Types

Everything is a string in Tcl. Teek converts Python objects to strings and strings to Python objects for you, but you
need to tell teek what types of values you want to get. This section describes how.

Python to Tcl conversion

Arguments passed to tcl_call() are handled like this:

• Strings are passed to Tcl as is.

• If the argument is None, an empty string is passed to Tcl because Tcl uses an empty string in many places where
Python uses None.

• If the argument is a dictionary-like object (more precisely, collections.abc.Mapping), it is turned into a
list of pairs. This is because {'a': 'b', 'c': 'd'} and ['a', 'b', 'c', 'd'] are represented
the same way in Tcl.

• True and False are converted to 1 and 0, respectively.

• Integers, floats and other real numbers (numbers.Real) are converted to strings with str().

• If the value has a to_tcl() method, it’s called with no arguments. It should return a string that will be passed
to Tcl.

• Anything else is treated as an iterable. Every element of the iterable is converted as described here, and the
result is a Tcl list.

Conversions should raise ValueError or TclError when they fail.

Type Specifications

Teek also has type specifications for converting from a Tcl object to a Python object. Here is a list of valid type
specifications:

• str (that is, literally str, not e.g. 'hello') means that a string is returned.

• None means that the value will be ignored entirely, and the Python value is always None.

• bool means that the value is treated as a Tcl boolean. All valid Tcl booleans specified in Tcl_GetBoolean(3tcl)
are supported.

• int, float or any other subclass of numbers.Real means that the value will be converted to that class by
first converting to string as if str was used, and then calling the class with the stringed value as an argument.
However, if the stringed value is the empty string, None is returned and the class isn’t called.

• If the type specification is a class with a from_tcl() classmethod, that will be called with one argument, the
value converted to a string. If the stringed value is an empty string, None is returned and from_tcl() is not
called.

The type specifications can be also combined in the following ways. These examples use str, int and float, but all
other valid specifications work as well. The return types can be nested arbitrarily; for example, [(int, float)]
means a value like [(12, 3.4), (56, 7.8)].

• [str] means a list of strings, of any length.

3.2. Tcl Calls 73

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/exceptions.html#ValueError
https://www.tcl.tk/man/tcl/TclLib/GetInt.htm
https://docs.python.org/3/library/numbers.html#numbers.Real

Teek Documentation

• (str, int) means a tuple of a string followed by an integer. This allows you to create a sequence with
different kinds of items in it. For example, (str, str, str) is like [str] except that it also makes sure
that the length of the result is 3, and returns a tuple instead of a list.

• {'a': int, 'b': float} means a dictionary with string keys. If the Tcl dictionary happens to have
a key named a or b, it is converted to int or float respectively; other keys will be strings. This means that
{} is a dictionary with all keys as strings and values as integers. There is no way to work with dictionaries that
have non-string keys.

Examples:

>>> teek.tcl_call([str], 'list', 'a', 'b', 'c')
['a', 'b', 'c']
>>> teek.tcl_call((str, int, float), 'list', 'hello', '3', '3.14')
('hello', 3, 3.14)
>>> teek.tcl_call([bool], 'list', 'yes', 'ye', 'true', 't', 'on', '1')
[True, True, True, True, True, True]
>>> teek.tcl_call({}, 'dict', 'create', 'a', 1, 'b', 2) # doctest: +SKIP
{'a': '1', 'b': '2'}
>>> teek.tcl_call([str], 'list', 123, 3.14, None, 'hello')
['123', '3.14', '', 'hello']

Creating Tcl Commands

It’s possible to create Tcl commands that Tcl code can call. For example, when a button is clicked, Tcl invokes a
command that the Button class created with create_command().

teek.create_command(func, arg_type_specs=(), *, extra_args_type=None)
Create a Tcl command that calls func.

Here is a simple example:

>>> tcl_print = teek.create_command(print, [str]) # calls print(a_string)
>>> tcl_print # doctest: +SKIP
'teek_command_1'
>>> teek.tcl_call(None, tcl_print, 'hello world')
hello world
>>> teek.tcl_eval(None, '%s "hello world"' % tcl_print)
hello world

Created commands should be deleted with delete_command() when they are no longer needed.

The function will take len(arg_type_specs) arguments, and the arguments are converted to Python ob-
jects using arg_type_specs. The arg_type_specs must be a sequence of type specifications.

If extra_args_type is given, the function can also take more than len(arg_type_specs) arguments,
and the type of each extra argument will be extra_args_type. For example:

>>> def func(a, b, *args):
... print(a - b)
... for arg in args:
... print(arg)
...
>>> command = teek.create_command(func, [int, int], extra_args_type=str)
>>> teek.tcl_call(None, command, 123, 23, 'asd', 'toot', 'boom boom')
100
asd

(continues on next page)

74 Chapter 3. Understanding teek

Teek Documentation

(continued from previous page)

toot
boom boom

The return value from the Python function is converted to a string for Tcl.

If the function raises an exception, a traceback will be printed. However, the Tcl command returns an empty
string on errors and does not raise an error in Tcl. Be sure to return a non-empty value on success if you want
to do error handling in Tcl code.

teek.delete_command(name)
Delete a Tcl command by name.

You can delete commands returned from create_command() to avoid memory leaks.

3.2. Tcl Calls 75

Teek Documentation

76 Chapter 3. Understanding teek

Python Module Index

t
teek.dialog, 57
teek.extras, 66
teek.extras.cross_platform, 67
teek.extras.image_loader, 68
teek.extras.links, 68
teek.extras.more_dialogs, 67
teek.extras.soup, 69
teek.extras.tooltips, 67

77

Teek Documentation

78 Python Module Index

Index

A
abort_retry_ignore() (in module teek.dialog), 57
add() (some_tag method), 41
add_function_link() (in module

teek.extras.links), 68
add_soup() (teek.extras.soup.SoupViewer method), 69
add_url_link() (in module teek.extras.links), 68
after() (in module teek), 21
after_idle() (in module teek), 21
append_and_select() (teek.Notebook method), 36
ask_integer() (in module teek.extras.more_dialogs),

68
ask_string() (in module teek.extras.more_dialogs),

68

B
back() (some_text_index method), 39
between_start_end() (some_text_index method),

40
bind() (some_tag method), 42
bind() (teek.Widget method), 55
bind_class() (teek.Widget method), 55
bind_tab_key() (in module

teek.extras.cross_platform), 67
bindings (some_tag attribute), 42
bindings (teek.Widget attribute), 55
blank() (teek.Image method), 64
blue (teek.Color attribute), 59
busy() (teek.Widget method), 19
busy_forget() (teek.Widget method), 19
busy_hold() (teek.Widget method), 19
busy_status() (teek.Widget method), 19
Button (class in teek), 47

C
Callback (class in teek), 59
cancel() (timeout_object method), 21
Canvas (class in teek), 29
Checkbutton (class in teek), 47

class_bindings (teek.Widget attribute), 55
Color (class in teek), 58
color() (in module teek.dialog), 58
Combobox (class in teek), 47
command_list (teek.Widget attribute), 45
config (row_or_column attribute), 26
config (some_canvas_item attribute), 28
config (teek.Image attribute), 64
config (teek.MenuItem attribute), 34
config (teek.NotebookTab attribute), 37
config (teek.Widget attribute), 44
connect() (teek.Callback method), 59
coords (some_canvas_item attribute), 28
copy() (teek.Image method), 64
copy_from() (teek.Image method), 64
create_command() (in module teek), 74
create_line() (teek.Canvas method), 29
create_oval() (teek.Canvas method), 29
create_rectangle() (teek.Canvas method), 29
create_tags() (teek.extras.soup.SoupViewer

method), 70
cursor_pos (teek.Entry attribute), 48

D
deiconify() (teek.Toplevel method), 51
delete() (some_canvas_item method), 28
delete() (some_tag method), 41
delete() (teek.Image method), 64
delete() (teek.NamedFont method), 62
delete() (teek.Text method), 43
delete_command() (in module teek), 75
destroy() (teek.Widget method), 45
destroy() (teek.Window method), 52
directory() (in module teek.dialog), 58
disconnect() (teek.Callback method), 60
download() (teek.extras.soup.SoupViewer method), 70

E
end (teek.Text attribute), 42

79

Teek Documentation

Entry (class in teek), 47
error() (in module teek.dialog), 57
event_generate() (teek.Widget method), 56

F
families() (teek.Font class method), 61
family (teek.Font attribute), 61
find_above() (some_canvas_item method), 28
find_all() (teek.Canvas method), 29
find_below() (some_canvas_item method), 28
find_closest() (teek.Canvas method), 29
find_enclosed() (teek.Canvas method), 29
find_overlapping() (teek.Canvas method), 29
find_withtag() (teek.Canvas method), 29
focus() (teek.Widget method), 45
Font (class in teek), 61
forward() (some_text_index method), 39
fpixels (teek.ScreenDistance attribute), 66
Frame (class in teek), 48
from_tcl() (teek.Color class method), 59
from_tcl() (teek.Font class method), 61
from_tcl() (teek.Image class method), 64
from_tcl() (teek.ScreenDistance class method), 66
from_tcl() (teek.TclVariable class method), 63
from_tcl() (teek.Widget class method), 45

G
geometry() (teek.Toplevel method), 51
get() (teek.Image method), 64
get() (teek.Scrollbar method), 50
get() (teek.TclVariable method), 63
get() (teek.Text method), 43
get_all_images() (teek.Image class method), 64
get_all_named_fonts() (teek.NamedFont class

method), 62
get_all_tags() (teek.Text method), 43
get_bytes() (teek.Image method), 64
get_slaves() (row_or_column method), 26
get_tab_by_widget() (teek.Notebook method), 36
get_tag() (teek.Text method), 43
green (teek.Color attribute), 59
grid() (teek.Widget method), 25
grid_columns (teek.Widget attribute), 25
grid_forget() (teek.Widget method), 25
grid_info() (teek.Widget method), 25
grid_rows (teek.Widget attribute), 25
grid_slaves() (teek.Widget method), 25

H
height (teek.Image attribute), 64
hide() (teek.NotebookTab method), 37

I
iconify() (teek.Toplevel method), 51

iconphoto() (teek.Toplevel method), 51
Image (class in teek), 63
in_use() (teek.Image method), 65
info() (in module teek.dialog), 57
init_threads() (in module teek), 17
initial_options (teek.NotebookTab attribute), 37
insert() (teek.Text method), 43
invoke() (teek.Button method), 47
invoke() (teek.Checkbutton method), 47
item_type_name (some_canvas_item attribute), 28

L
Label (class in teek), 48
LabelFrame (class in teek), 48
lineend() (some_text_index method), 40
linestart() (some_text_index method), 40
lower() (some_tag method), 42

M
make_thread_safe() (in module teek), 18
marks (teek.Text attribute), 43
maxsize (teek.Toplevel attribute), 51
measure() (teek.Font method), 61
Menu (class in teek), 32
MenuItem (class in teek), 33
metrics() (teek.Font method), 62
minsize (teek.Toplevel attribute), 51
move() (teek.Notebook method), 36

N
name (some_tag attribute), 41
NamedFont (class in teek), 62
nextrange() (some_tag method), 42
Notebook (class in teek), 35
NotebookTab (class in teek), 36

O
ok_cancel() (in module teek.dialog), 57
on_delete_window (teek.Toplevel attribute), 52
on_take_focus (teek.Toplevel attribute), 52
open_file() (in module teek.dialog), 57
open_multiple_files() (in module teek.dialog),

57
overstrike (teek.Font attribute), 61

P
pack() (teek.Widget method), 23
pack_forget() (teek.Widget method), 23
pack_info() (teek.Widget method), 23
pack_slaves() (teek.Widget method), 24
pixels (teek.ScreenDistance attribute), 65
place() (teek.Widget method), 26
place_forget() (teek.Widget method), 26

80 Index

Teek Documentation

place_info() (teek.Widget method), 26
place_slaves() (teek.Widget method), 26
popup() (teek.Menu method), 33
prevrange() (some_tag method), 42
Progressbar (class in teek), 48

Q
quit() (in module teek), 71

R
raise_() (some_tag method), 42
ranges() (some_tag method), 42
read() (teek.Image method), 65
red (teek.Color attribute), 59
redither() (teek.Image method), 65
remove() (some_tag method), 42
replace() (teek.Text method), 43
retry_cancel() (in module teek.dialog), 57
run() (in module teek), 71
run() (teek.Callback method), 60

S
save_file() (in module teek.dialog), 58
ScreenDistance (class in teek), 65
Scrollbar (class in teek), 49
see() (teek.Text method), 43
selected_tab (teek.Notebook attribute), 36
Separator (class in teek), 50
set() (teek.Scrollbar method), 50
set() (teek.TclVariable method), 63
set_tooltip() (in module teek.extras.tooltips), 67
size (teek.Font attribute), 61
slant (teek.Font attribute), 61
SoupViewer (class in teek.extras.soup), 69
Spinbox (class in teek), 50
start (teek.Text attribute), 42
start() (teek.Progressbar method), 49
state (teek.Widget attribute), 44
stop() (teek.Progressbar method), 49
stop_loading() (teek.extras.soup.SoupViewer

method), 70

T
tags (some_canvas_item attribute), 28
tcl_call() (in module teek), 72
tcl_eval() (in module teek), 72
TclError, 72
TclVariable (class in teek), 62
teek.after_quit (built-in variable), 72
teek.before_quit (built-in variable), 72
teek.BooleanVar (built-in class), 63
teek.dialog (module), 57
teek.extras (module), 66

teek.extras.cross_platform (module), 67
teek.extras.image_loader (module), 68
teek.extras.links (module), 68
teek.extras.more_dialogs (module), 67
teek.extras.soup (module), 69
teek.extras.tooltips (module), 67
teek.FloatVar (built-in class), 63
teek.IntVar (built-in class), 63
teek.StringVar (built-in class), 63
teek.TCL_VERSION (built-in variable), 66
teek.TK_VERSION (built-in variable), 66
Text (class in teek), 42
text (teek.Entry attribute), 48
title (teek.Toplevel attribute), 51
tk_class_name (teek.Widget attribute), 44
to_named_font() (teek.Font method), 62
to_tcl() (some_tag method), 42
to_tcl() (teek.Color method), 59
to_tcl() (teek.Font method), 62
to_tcl() (teek.Image method), 65
to_tcl() (teek.ScreenDistance method), 66
to_tcl() (teek.TclVariable method), 63
to_tcl() (teek.Widget method), 46
Toplevel (class in teek), 51
toplevel (teek.Window attribute), 52
transient (teek.Toplevel attribute), 51
transparency_get() (teek.Image method), 65
transparency_set() (teek.Image method), 65
type (teek.MenuItem attribute), 34
type_spec (teek.TclVariable attribute), 63

U
underline (teek.Font attribute), 61
unhide() (teek.NotebookTab method), 37
update() (in module teek), 72

W
wait() (teek.TclVariable method), 63
wait_window() (teek.Toplevel method), 52
warning() (in module teek.dialog), 57
weight (teek.Font attribute), 61
Widget (class in teek), 44
widget (teek.extras.soup.SoupViewer attribute), 69
widget (teek.NotebookTab attribute), 37
width (teek.Image attribute), 65
Window (class in teek), 52
windowingsystem() (in module teek), 66
winfo_children() (teek.Widget method), 46
winfo_exists() (teek.Widget method), 46
winfo_height() (teek.Widget method), 46
winfo_id() (teek.Widget method), 46
winfo_reqheight() (teek.Widget method), 46
winfo_reqwidth() (teek.Widget method), 46
winfo_rootx() (teek.Widget method), 46

Index 81

Teek Documentation

winfo_rooty() (teek.Widget method), 46
winfo_toplevel() (teek.Widget method), 46
winfo_width() (teek.Widget method), 46
winfo_x() (teek.Widget method), 46
winfo_y() (teek.Widget method), 47
withdraw() (teek.Toplevel method), 51
wm_state (teek.Toplevel attribute), 51
wordend() (some_text_index method), 40
wordstart() (some_text_index method), 40
write() (teek.Image method), 65
write_trace (teek.TclVariable attribute), 63

X
xview() (teek.Text method), 43

Y
yes_no() (in module teek.dialog), 57
yes_no_cancel() (in module teek.dialog), 57
yview() (teek.Text method), 43

82 Index

	Tutorials and Guides
	Reference
	Understanding teek
	Python Module Index
	Index

